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1  Methods 
 

NCBI gene prediction  is a combination  of homology searching with ab initio 

modeling.   The  use of ab initio  is threefold:  a) we use ab initio  scores for 

evaluating the alignments and locating the optimal CDS in the alignments, b) 

in the case when we have a partial alignment we extend this alignment using 

the ab initio prediction, and c) when there is no experimental information we 

make an ab initio  model. This process produces the gene models that could 

be classified as completely supported, pa r t ia l l y  supported o r  not 

supported at all. The general philosophy behind this process is that we 

strongly prefer to use experimental information whenever it is available. 

Before we start a genome annotation we collect several data set s .  First 

we collect all available cDNA for the studied organism and sometimes the cDNA 

for closely related organisms.  Then we generate a Target protein set and a 

Search protein set.  The former is a collection of the proteins that we  believe 

should be found on the genome. Usually it includes all known proteins for the 

studied organism and several sets of known proteins for well-studied 

genomes.  The latter se t  is a much wider collection of eukaryotic proteins. 

We try to  align on the genome all proteins from the Target P r o t e i n  S e t . 

The proteins from the Search Protein Set are aligned only if they are similar 

enough to predicted models, in which case these additional alignments  

help in refining the models. In addition to the sequences for the homology 

search we create an organism specific parameter set which is used for 

evaluation of the ab initio scores. 

The chart of the data flow is shown in the Figure.1.   There are several 

programs that are involved in the process of the gene prediction.   We use 

Compart which  analyzes  the  Blast [1] hits  and  finds compartments which 

are the  approximate  positions  of the  target sequences on the  genome.  This 

program is designed to recognize gene duplications.   Compart step is done 

separately for cDNA and proteins sets.  For each compartment we make a 

spliced alignment using Splign for cDNA compartments and ProSplign for 

protein compartments. The alignments are fed into Chainer which combines 

partial alignments into hopefully full length or at least longer chains. Finally, 

Gnomon decides if the chains are full length models and extends the chains if 

needed.  This procedure is run twice. For the first round we use the 

cDNA and Target p ro t e in  alignments.   All predicted  first round models 

are compared  with  the  proteins  from the  Search  protein  set  and  the  

proteins found to be good matches  are aligned on the  genome using 

ProSplign. 
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Figure 1: Available cDNAs and the Target proteins  are used 

to build the first round predictions.   These models are com- 

pared with the proteins from much broader Search protein 

set.  Good matches are added to the support for the second 

round predict ions.    Compart finds approximate p o s i t i o n s  

of the target sequences on the genome taking into account 

possible gene duplications.  Splign and ProSplign are used to 

build spliced alignments.  Chainer combines partial alignments 

into longer models.  Gnomon extends partial mode ls and 

creates the final annotation. 
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These addit ional a lignment s a nd  all the above cDNA and Target protein 

alignments are used for the final round of predictions. 

For each genome being annotated at NCBI we run the Gnomon procedure 

shown in the Figure.1.   All obtained g e ne  models are shown as Ab initio 

models map of NCBI Map Viewer1. Although the protein and RNA sequences 

of the models are not loaded into GeneBank, they could be searched using 

the genome specific Blast tool. 

Our final annotation is a combination of the best placements of RefSeq 

mRNA alignments and completely or partially s u p p o r t e d  G no mo n  

predictions.  If they overlap the RefSeq alignments  supersede the Gnomon 

models. The Gnomon models with frame shifts or premature  stops are 

usually shown as pseudo genes. 
 

 

1.1  Gnomon 
 

Gnomon is a gene prediction  HMM-based  program.   The  core algorithm  is 

based on Genscan [4] which uses a 3-periodic fifth-order Hidden Markov Model 

for the coding  propensity  score and  incorporates  descriptions  of the  basic 

transcriptional, translational  and  splicing signals,  as well as length  

distributions  and compositional features  of exons, introns  and intergenic 

regions. The most important distinction of Gnomon from Genscan and other 

ab initio prediction programs is its ability to conform to the supplied 

alignments and extend and complement them when necessary. 

Mathematically, an HMM-based ab initio  prediction  is a search  in the 

gene  configuration  space  for the  gene which  provides  the  maximal  score. 

Sometimes due to limitations of the underlying biological model the optimal 

solution may be different from the real gene model we are looking for.  The 

number of these artifacts could be considerably lowered if in gene making we 

take into account the independent experimental evidence which we may have 

in the form of alignments.  If in the search space we exclude all configurations 

that are not compatible with the available alignments, then the optimization 

process in this collapsed space will yield a gene configuration  which is 

possibly  suboptimal  from the  ab initio  point  of view but  exactly  follows 

the experimental  information  we have.   As can be seen in Fig.2 partial 

a l i g n me n t s  could be extended and possibly connected by this procedure.  

UTR, if they present in the alignment, are also included in the gene model.   
 

1 http://www.ncbi.nlm.nih.gov/mapview/ 
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Figure  2:  Gnomon searches for the optimal  model in a col- 

lapsed configuration space which includes only configurations 

compatible  with  the alignments.  In the  process the  partial 

alignments  are extended  and  possibly connected.   Although 

UTRs are not scored by Gnomon they are included in the the 

gene model when they  are available from the  alignment.   In 

this example the final model c include two partial alignments 

a and b and complements  them  by ab initio  prediction. 
 
 

For the genes for which we don’t yet have any experimental information 

Gnomon will create conventional ab initio predictions. 

Following the Genscan logic Gnomon recognizes as HMM states cod ing  

exons and introns on both strands and  intergenic sequences.  Translational and 

splice signals are described using WMM [14] and WAM [16] models.  A 

12 bp WMM model, beginning 6 bp prior to the initiation co do n, is used 

for the translation initiation s i g n a l  [10].  A 6 bp first order WAM model 

starting at the stop codon is used for the translation termination signal. The 

donor splice signal is described by a 9 bp second order WAM model, and the 

acceptor splice signal is described by a 43 bp second order WAM model. 

Both donor and acceptor models include 3 bp of the coding exon.  Coding 

portions of exons are modeled using an inhomogeneous 3-periodic fifth-order 

Markov model [3]. The noncoding states are modeled using a homogeneous 

fifth-order Markov model. 

Lengths distribution o f the states is usually peaked (or even multi-modal) 

near relatively short length and very smooth for longer lengths.  For example, 

from Fig.3 we can see that human introns have a peak near 100 bp which is 

much more pronounced for the genes located in the areas of a high C+G 
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Figure 3: In human, as in all other organisms we annotated, 

the distribution of intron lengths has a sharp peak near 100 bp 

and a shoulder with a very smooth fall.  In the areas of the 

genome with high C+G content the fraction of the introns in 

the peak area is much higher than in the areas with low C+G 

content. 
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Figure 4: The length distribution of the human introns in log- 

arrhythmic coordinates illustrates that in the low C+G 

content  areas the short intron peak is much lower while the 

shoulder of the distribution is  much longer.  The long intron 

distribution is very well approximated by the formula (1). 
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In  Fig.4  is shown that the  peak  is followed by  a  long shoulder which is  

much  longer in areas of low C+G  content.   Quite interestingly,  in all 

genomes we studied the shoulder  is very well approximated  by a simple 

formula 
A 

F = 
L2  + l2 

(1) 

Where l is the intron length and A and L are constants.    We found that all 

other states behave similarly, but in some cases the shoulder part of the 

distribution is  very small. 

For each new genome the described above parameters a r e  obtained 

us ing  cDNA and protein a l i g n me n t s  w it h  full CDS.  Currently   we have  

parameters for the following  organisms:  Apis mellifera, Arabidopsis  

thailana, Bos taurus, Caenorhabditis elegans, Canis familiaris, Danio rerio, 

Drosophila melanogaster,  Homo sapiens,  Mus musculus, Oryza sativa,  

Poplar,  Strongy- locentrotus  purpuratus, Tribolium  castaneum. 
 

 

1.2  Chainer 
 

Many  of the  spliced alignments  we obtain  using  Splign and  ProSplign are 

partial,  either because the aligned sequences are partial  or in the case of the 

protein  alignments  because only conserved portions  of the  protein  could be 

aligned well enough. Usually for each putative gene we end up having many 

fragments that complement each other.   Analysis and assembling of these 

partial a l ig nme nt s  provides longer gene models and additional information 

about alternative splicing isoforms [15, 9, and 11]. 

When number of fragments is large the number of possible assembled 

models for each putative g e ne  can grow astronomically.   To deal with this 

phenomena  methods that produce  a minimal  set of assembled models that  

accounts for all available alignments have been developed [7, 5]. These 

methods are used to assemble cDNA (EST and mRNA) alignments.  Our 

approach is to use all alignments inc lud ing  protein a lignments.  In 

addition to the exon-intron structure, the protein alignments provide 

information about the coding region including the frame. When we chain 

partial protein alignments with cDNA alignments we should avoid creating 

transcripts which cann ot be used as legitimate gene models.  For example, 

transcripts in which it is not  possible to find a proper  start codon  or 

transcripts with  two  or more coding regions that could not be read through  

should not be created. 
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Figure 5: After we have determined the UTR/CDS nature of 

each alignment we can assemble them taking into account not 

only exon-intron structure compatibility but also the 

compatibility of the reading frames.   For example, 

alignments with coding regions that cannot be connected 

(group a and group b in the picture) a r e  not chained 

together even if they are otherwise compatible.   This reduces 

the possibility of creating chimeric transcripts. 
 
 

For our purposes we have adopted and modified the Maximal Transcript 

Alignment algorithm described in [7]. This algorithm provides a very efficient 

way of alignments assembling based on their exon structure compatibility. The 

protein alignments add a new dimension to the compatibility issue. Be- fore 

we start our assembly process we analyze all cDNA alignments, and for each 

one we find the best scoring CDS. For scores we use 3-periodic fifth-order 

Markov model for the coding propensity score and Weight Matrix Method 

models for the splice signals and translation initiation and termination signals.  

These are the same scores as we use with Gnomon (see section 1.1), our ab 

initio predict ion tool.  All cDNA with the CDS scoring above a certain 

threshold are marked as coding, and all others are marked as UTR.  Some of 

the CDS may be incomplete meaning that t h e y  don’t have a translation 

initiation or termination signal.  All protein alignments are also scored the 

same way and if they don’t satisfy the threshold criterion for a valid CDS 

they are removed. 

After we have determined the UTR/CDS nature of each alignment we can 

assemble them taking into account not only exon-intron structure 

compatibility but also the compatibility o f the reading frames.  Two coding 

alignments 
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are connected only if they both have open and compatible CDS. An UTR 

gets connected to coding alignments only if there are necessary translation 

initiation or termination signals.  There are no restrictions on the extension 

of a 5’ UTR other than the exon-intron structure compatibility.   To avoid 

creation of artificial NMD candidates [6], we don’t connect a multi-exon 3’ 

UTR. After the compatibility of the alignments is established the rest of the 

process is performed according to [7].  Not only does this method 

incorporate the protein alignments into the assembly process, it also in many 

cases eliminates creation of chimeric models which connect two separate genes 

(see Fig.5). 

For each assembled model we find the best scoring CDS as was described 

above for individual alignments.   If a model includes a protein alignment, its 

CDS should contain it.   If the  protein  is not  on our list of potentially  

partial  proteins  and its 5’ end is fully aligned and points  on an appropriate  

start codon on the genome, we make this start  sticky.  It means that the CDS 

could be extended beyond this point only if we have cDNA alignments that 

extend to an alternative start codon and the extension will increase the score at 

least by 10%. Extended o r  not, the start is marked as a confirmed start and 

Gnomon won’t be allowed to extend it any further. 

After the assembly process we may have more than one model per gene 

locus. From all these models we select the model with the best scoring CDS. If 

the best model has a complete CDS which includes the translation initiation 

and termination signals it is combined with other complete models, and this 

group forms an alternatively spliced gene. If the best model is not complete, 

all other models are discarded, and  the model is directed to Gnomon for 

extension by ab initio prediction. 
 

 

1.3  cDNA alignments 
 

Splign is a tool for aligning spliced cDNA sequences against their  genomic 

counterparts.   In spirit of Est_genome [12], the program produces accurate 

spliced alignments via solving an optimization p r o b le m formulated 

spec ifically to account for splice signals and introns. 

The formulation discriminates between the most frequent (GT/AG), less 

frequent (GC/AG, AT/AC) and arbitrary donor/acceptor sites. A version of 

the algorithm designed for the use with lower-quality genomes discriminates 

further by assuming possible substitutions in consensus splices and giving 

stronger penalties to less preserved splice signals. A lower limit on the length 
 

 

10 



 

 
 
 
 

Realigned portion on cDNA 

 
 
 
 
 
 

 
Realigned portion on genome 

 
 
 

 
Final spliced alignment 

 
 

 
Figure 6:  Splign uses the high identity po r t io n of the hits to 

seed the global alignment which substantially r educ es  the 

running time. 
 
 

of introns is explicitly imposed while the upper limit is implied from the 

compartmentalization step where no two overly distant local alignments are 

placed to the same compartment. 

Since solving the global sequence alignment problem has the complexity 

proportional  to the  product  of lengths  of the  sequences, the hits  arranged 

into  compartments on the  prior step  are used to limit  search span  on the 

genomic sequence and to split the dynamic programming  matrix  into smaller 

blocks by seeding the  global alignment  (see Figure.6).   Both measures are 

critical in making the tool feasible for large-scale application. 

For each compartment,   its genomic search space is expanded b y  the 

amount increasing with the length of query cDNA ends not covered by local 

alignments.  This allows detecting the end exons if they are missed by the 

local alignment tool for reasons such as the length shorter than the word size 

or being a part of a masked region. Each hit may correspond to an exon, a 

part of an exon, or even a number of exons. Therefore, it is important to be 

conservative when using local alignments for alignment seeding.  Within each 

compartment, parts o f alignments that overlap on the query are dropped. 

From the remaining alignments, their longest perfectly matching diagonals are 

extracted, and their cores are used to seed the global alignment. 

While technically any local alignment tool can be used with Splign, our 

tool of choice in the context o f Gnomon is Megablast [17] for same-species 
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alignments and discontinuous Megablast for cross-species alignments.  The 

latter  proved particularly  important for aligning sequences from more diver- 

gent species where tools relying on perfect oligomer matching  would require 

use of prohibitively  small oligomers. 

Hits comprising compartments allow to determine whether the query and 

the subject  sequence align in the same strand,   but t he y g ive no clue on 

what exactly strand each sequence has.  Most mRNA sequences have natural 

biological order and positive strand can be assumed when aligning them.  On 

the contrary, EST sequences are usually not oriented, so both the original 

sequence and its reverse complimentary have to be aligned and the strand is 

determined by comparing the resulting alignments. 

Splign is written i n  C++ using NCBI C++ Toolkit which makes the 

application portable across several platforms.  The source code and the 

precompiled executables for major platforms are available for download2. 
 

 

1.4  Protein alignments 
 

Protein a l ig nme nt s  are made by ProSplign. Similarly to Splign, it is a 

global protein t o  genome alignment tool which produces accurate s p l i c e d  

alignments.  The Blastx and Compart steps precede the ProSplign step.  

ProSplign is designed to find alignments of even distantly r e lat ed  proteins with 

lower identity level.  In these cases the Blastx hits do not give reliable 

information about seeds, so ProSplign doesn’t use seeds and instead aligns the 

protein against a slightly extended genomic region identified by Compart as 

the compartment. Some poorly conserved parts of distantly r e la t ed  proteins 

simply may not have corresponding counterparts on the genome. ProSplign 

employs a global approach and aligns these parts anyway.   As a result, well 

aligned regions and poorly aligned regions may alternate in the final 

alignment.  As shown in Figure.7, the post processing step throws away the 

poorly aligned regions which correspond to not conserved portions of the 

protein. 

ProSplign uses the regular protein Blastp scoring system.  In addition to 

regular gaps ProSplign introduces two additional types of gaps.  The frame 

shifts, genomic insertions or deletions which length is not a multiple of three, 

have a substantial additional penalty.  The introns are treated similar ly to the 

regular gaps but with a small extension cost.  Special effort is taken to score 

properly the spliced amino acids. Since ProSplign is a global alignment 
 

2 http://www.ncbi.nlm.nih.gov/sutils/splign/ 
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Figure 7 : ProSplign globally a ligns t he p r o t e in    against   

a slightly extended genomic region identified by Compart as 

the compartment.   Very  low identity portions  of the  

alignment which corresponds  to poorly  conserved portions  

of the protein  are filtered out  in a post processing step.  

These missing parts of the alignment (shown as a dashed line) 

will be reconstructed la t er  either by Chainer using other 

alignments or by Gnomon ab initio prediction. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

13 



 
 
 
 

 

program, t h e  computat ional complexity of the algorithm a nd , e ve n  

more importantly, the memory use are proportional to  the product of the 

lengths of the involved sequences.   Some genes with long introns may cover 

over a million bases on the genome.  To address the memory issue for such 

cases an extra intron finding stage is introduced.  It is well known that any 

global alignment algorithm ne e d s  memory for the backtracking information.    

At the introns find ing  stage ProSplign keeps track only of introns.   After 

the intron (and exon) coordinates on the genomic sequence are known, 

ProSplign realigns the extracted from the genome transcript against the protein 

at a very little additional computational cost. 
 

 

1.4.1 Scoring system 
 

ProSplign scores the target protein sequence against t ranslat ion of the 

genomic sequence which is made on the fly.  Figure.8 shows an alignment 

ex- ample and its elements which are scored. A translation may change its 

frame because of an insertion or deletion or it may jump over an intron which 

some- times results in a spliced amino acid. By default ProSplign uses 

Blossum62 [8] scoring system with default Blastp gap penalties (Popen for gap 

opening and Pext    for gap extension).  For protein to DNA alignments it is 

easier to measure the gap length in nucleotide bases.  Since one amino acid 

corresponds to three nucleotide bases, one nucleotide extension cost is set to 

Pext/3.  The total penalty of a gap of length of l base pairs is defined as 
 

lPext
 

Pgap  = Popen  + (2) 
3 

This penalty is applied to all gaps, insertions or deletions, which length is 

a multiple of three.  Gaps which length is not a multiple of three result in a 

frame shift and have a much higher opening penalty Pfs open.  The extension 

penalty for the frame shifts is the same as for the regular gaps. 

The introns are scored as a special type of gaps with a very small extension 

cost Iext   and an opening cost Iopen  which is different between the  most  

frequent (GT/AG), less frequent (GC/AG,  AT/AC)  and arbitrary splice 

sites. The protein t o  genomic alignment scores are codon oriented while the 

intron location is not.  In fact, an intron could split a codon.  If this 

happens ProSplign still scores two parts o f the codon as a unit.  An intron 

may also appear inside a gap. In this case the gaps on the both sides of the 

intron are treated as one gap with a combined length.   This allows 

introducing only 
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Figure 8: This figure shows basic elements of a protein 

alignment.  Protein sequence is scored against the translation 

of the genomic sequence.  Gap length is counted in nucleotide 

bases. Frame shifts, gaps which length is not multiple of three, 

cause the translation to change the frame.  The translation jumps 

over an intron.  One nucleotide base gap extension cost is one 

third o f regular one amino acid extension cost.   The frame 

shifts are penalized much more than the regular gaps. 

Alignment positions with positive score are marked with a 

plus sign in the status line. The status line is used during the 

post processing step. 
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Figure 9:  Each example is a fragment of an alignment with 

one intron.  The alignment at the right is the full alignment 

including the intron. For simplicity  the  nucleotides  inside 

the  intron  are  not  shown except  for the splice sites  which 

are shown in red.  The alignment at the left is the alignment 

of the protein and the spliced transcript extracted fr o m the 

genome. The idea behind the ProSplign intron scoring is to in- 

sure that the program creates identical alignments when 

presented with a genomic sequence and the corresponding 

transcript sequence.   The case A) is the simplest case in which 

the intron is located exactly between two codons.   The  total  

score in this  case is the  Blossum62  score (which exactly 

corresponds to the score of the transcript variant of the 

alignment)  minus the intron  penalty Iopen + lIext  where l is  

the intron  length.  In the case B) the intron happens to be 

inside a gap.  In this case the score includes the Blossum62 

component, a penalty for a three base pairs or one amino acid 

long gap which is Popen +  Pext,  and the above intron penalty. 

The first two components are the same for the transcript 

variant of the alignment.  It is important to mention that in 

this case, even with an intron in between, ProSplign recognizes 

that this gap doesn’t introduce a frame shift in the 

translation.  In the case C) the intron splits a Threonine 

codon.  But still, this amino acid is fully accounted for in the 

scoring. 
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one opening penalty and make a correct decision if this gap is a regular gap 

or a frame shift.  In other words, the score of an alignment with introns could 

be thought of as a combination of the score of the intronless alignment of the 

protein and the transcript extracted f r o m the genome and penalties for the 

introns.   This feature is very useful for the memory optimization descr ibed  

below. Intron scoring is illustrated in Figure.9. 
 

 

1.4.2 Algorithm details 
 

A classical Needleman Wunsch type [13] global alignment algorithm for 

aligning of a  genomic sequence of a length  Lgen    and a protein  of a length  

Lprot has to calculate a set of optimal scores and backtracking  data  in each 

of the Lgen ×Lprot  nodes. To reconstruct the alignment the backtracking 

information should be stored for each node. With some eukaryotic proteins 

being several thousand a m i n o  acids long and spanning about  mil l io n  bases 

on the genomic sequence the memory allocation of such scale becomes 

unpractical.  In all these cases the bulk of the involved genomic sequence is 

located in introns, and if we knew the introns positions we could have aligned 

the protein against the much shorter transcript  extracted f r o m the genome.  

Following this idea ProSplign carries out the alignment in two steps.  First, it 

aligns the protein and the full length genomic sequence. During this step it 

keeps track only of the optimal scores and the intron structure of the 

alignment.  After the intron structure is known, ProSplign extracts much 

shorter transcript and runs the algorithm with full-fledged tracking but 

without addit ional intron related memory and computation overhead. 

In addition to the best score, the optimal scores for a gapped alignment 

include two best scores with a gap in one or another sequence .  In the case 

of ProSplign we effectively have several different types of gaps which are 

regular gaps, frame shifts, and introns with four different splice cites 

(GT/AG, GC/AG, AT/AC and arbitrary) for all of which we need the 

additional scores. 

Introns can be located at any position relative to a codon. Like for 

ordinary gaps we need one additional sco re for introns located exactly 

between two codons. If the codon is split in its first position then the 

upstream exo n includes a nucleotide which will affect the final score 

differently depending on the other two nucleotides on the other end of the 

intron.  Following the usual dynamic programming rules we have to maintain 

five additional scores for this situation (one for each letter A, C, G, T and N 

found in the last base of the upstream exon).  It seems that the same logics 

dictate that we have 
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to add another twenty five scores for the introns which split the codon in the 

second position.   In fact,  because we know the amino acid we are aligning 

against the split codon, we still can maintain  only five additional scores – one 

for each possible nucleotide on the other end of the intron.  Consequently, we 

need eleven additional  scores for each type of introns.  This analysis doesn’t 

take  into account  the introns  that  are located  inside gaps as  in Figure.9B. 

Proper accounting for these introns demands some more optimal scores which 

will be described in a different publication. 

ProSplign keeps two Lgen  long rows of optimal  scores which is enough for 

running  the optimization  algorithm.  Instead  of filling a Lgen  × Lprot  matrix  
with the backtracking information  ProSplign keeps chains of introns that are 

optimal  for each of the  Lgen    nodes of the  above two rows (see Figure.10). 

The intron representation in a chain consists of the beginning coordinate  of 

the  intron,  the  intron  length  and  a pointer  to the  previous  intron.   In the 

worst case scenario the memory used will be proportional to  the product of 

Lgen   and the number of introns.   In practice it  may be much less than that  

because many intron chains for close nodes are identical or have identical sub 

chains which could be reused.   For this purpose ProSplign maintains a  

memory pool of unused introns.  Any time a new intron is included in a chain 

it is allocated from the pool. If an intron is not used by any chain any more 

the memory is returned to the pool. 
 

 

1.4.3 Post processing 
 

Not all parts of a protein are conserved well enough to provide a reliable 

alignment.  In fact, some parts may not correspond to anything on the 

genome. Still, the global alignment algorithm will align the whole protein 

rendering a very low identity alignment for the non-conserved portions of 

the protein. These unreliable and often misleading pieces of the alignment are 

filtered out during the post processing step. 

For this purpose the post processing evaluates alignment positions.  If an 

amino acid is aligned against  a codon (including  codons split by an intron), 

and the Blossum62 score of  this  combination  is positive then  all three  

corresponding  alignment  positions  are  considered to be positive.   All cases 

of mismatches with a negative score, partial matches (an amino acid aligned 

against one or two bases) and all gaps other than introns are considered as 

negatives.   Any portion o f the alignment could be evaluated acco r d ing  to 

the fraction of the positive alignment positions it contains.  Alignment 

positions 
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Figure 10: To run the optimization  algorithm ProSplign keeps 

two last rows of optimal  scores which are Lgen  long.  Instead 

of maintaining  the  full set  of the backtracking  information 

which takes  a proportional  to  Lgen   × Lprot   amount  of mem- 

ory ProSplign retains  for each node of the last two rows only 

chains of the optimal  introns.  In this case the memory used 

is proportional  to the product  of Lgen   and the number  of in- 

trons.   The  memory usage can be further  optimized because 

many  introns  in different  chains are identical.   When a new 

intron  is found it  is  allocated  from a pool of unused introns 

and when this intron is not included in any chain any more it 

is returned  back to the pool.  After the optimization  is com- 

plete and the intron  locations are known, ProSplign  realigns 

the extracted from the genome transcript against the protein 

at a very little  additional  computational cost. 
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corresponding to introns is ignored for this calculation.  The positive 

alignment positions are shown as plus symbols on the status line of Figure.8. 

ProSplign keeps only parts of the alignment that satisfy the following rules: 
 

1. The total fraction of the positive alignment positions in a retained part 

must be not less than Ktotal. 
 

2. Any flanking stretch of a retained part must have a fraction of positive 

elements which is not less than K f l a nk  .  In particular,   it means that 

there are no flanking negative elements. 
 

3. There is no stretch of a retained part  that is longer than L and has a 

fraction of positive elements which is less than Kmin. 
 

4. Any retained part must be longer than Lmin. 
 

An alignment may have more than one retained par t .   The  gene structure  

located  outside  of these  parts  are determined  later  using other  evidence or 

ab initio. 
 

 

1.5  Finding compartments 
 

Both Splign and ProSplign are global alignment tools, and computationally it 

is not feasible to use them without finding rough placements of the target 

sequences on the genome. Usually, the Blast hits give a starting po int  which 

is good enough for this purpose.  Since very often there is more than one 

location on the contig where a target seque nc e  could be aligned, the Blast 

hits should be analyzed to give locations for each copy. 

Let’s say that two hits are compatible if they follow the natural f l o w  of 

the target sequence.  For the  alignments  on the  positive strand  the  relative 

position of the hits should be the same on both  the target  sequence and the 

genome, and  it should be the  opposite for the  alignments  on the  negative 

strand.  Compatible h i t s  may overlap but no ne  of them should be totally 

contained within the other.  This definition of the compatibility is transitive. 

A sequence of compatible hits h forms a compartment. The Compart finds 

all non-overlapping compact compartments on the genome for a given target 

sequence using maximal coverage algorithm.  Each compartment c is assigned 

a coverage which is a measure of how well it represents the target sequence 
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Figure 11: When more than one copy of the gene is present, 

the maximal coverage algorithm tries to find a set of compact 

compartments on the genome each of which is a putative gene 

location.   We use a special additional co mpar tment  penalty to 

prevent algorithm from starting a  new compartment each 

time it finds a duplicated exon (grey color in the picture). 
 
 
 

Φc  = 
X 

wh Lh
 (3) 

 

 

In this equat ion Lh  

h 
 

is the effective length of the hit  h on the target 

sequence.  Usually it is simply the  hit  length,  but  if the  hit  overlaps with a 

neighbor hit its effective length  is decreased  by a half of the overlap.  We 

have two choices for the weight wh . When the weight equals the identity  of 

the hit  the  coverage (3) is the number of matches.  We use this choice with 

the  cDNA alignments  for which most  useful hits  are  of very high identity. 

The other  choice is a constant weight equal 1. In this case the coverage (3) 

is simply the  target sequence length  covered by the  hits.  We usually  use it 

with the protein  alignments. 

When there  is more than  one compartment, the  target  sequence is 

covered  multiple times,  and  to  a  certain  extent finding  all  compartments 

is equivalent to maximization  of the total  coverage.  This is not  true  when 

we deal with exon duplication events as opposed to gene duplication  events 

(see Figure.11).  In these cases the additional hits should be ignored rather  

than turned  into additional compartments. Since usually in these exon 

duplication 
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events only a relatively small portion  of the gene is duplicated  we introduce 

a penalty Pnew  for an additional  compartment.  This penalty ensures that a 

new compartment is created only if there is enough gene material  for it.  The 

value of this parameter  is usually 25%–40% of the target  sequence length.  So 

our maximal coverage algorithm finds the compartments configuration which 

maximizes the following total  coverage 
 

Φ = 
X

(Φc  − Pnew )  (4) 
c 

The process of optimization  is performed  very effectively using the  

dynamic  programming  algorithm  [2].  First, all hits are sorted  into  

ascending order  by their  beginning  positions  along the genomic sequence.   

For  each hit,  possibilities are evaluated  of using it to extend  one of already  

opened compartments,  or to start  a new compartment.  The possibilities are 

assessed using (4) and the best variant is stored along with the pointer to the 

prior hit upon which the  variant is based.  After that,  the hit  with the  

highest  value of (4) is selected  and the backtracking  is carried  out to reveal 

the optimal hit  chain.  All  the hits  not included in this  chain are ignored.  

Each hit  in this  chain which is not compatible  with the  previous hit  

indicates  the start of a new compartment. We loosely use the term 

compartment as either a set of selected hits  or simply as the  region on the 

genome where these hits  are located. 
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