Mitochondria suppress local feedback activation of inositol 1,4, 5-trisphosphate receptors by Ca2+

J Biol Chem. 1999 May 14;274(20):14157-62. doi: 10.1074/jbc.274.20.14157.

Abstract

The concerted action of inositol 1,4,5-trisphosphate (IP3) and Ca2+ on the IP3 receptor Ca2+ release channel (IP3R) is a fundamental step in the generation of cytosolic Ca2+ oscillations and waves, which underlie Ca2+ signaling in many cells. Mitochondria appear in close association with regions of endoplasmic reticulum (ER) enriched in IP3R and are particularly responsive to IP3-induced increases of cytosolic Ca2+ ([Ca2+]c). To determine whether feedback regulation of the IP3R by released Ca2+ is modulated by mitochondrial Ca2+ uptake, the interactions between ER and mitochondrial Ca2+ pools were examined by fluorescence imaging of compartmentalized Ca2+ indicators in permeabilized hepatocytes. IP3 decreased luminal ER Ca2+ ([Ca2+]ER), and this was paralleled by an increase in mitochondrial matrix Ca2+ ([Ca2+]m) and activation of Ca2+-sensitive mitochondrial metabolism. Remarkably, the decrease in [Ca2+]ER evoked by submaximal IP3 was enhanced when mitochondrial Ca2+ uptake was blocked with ruthenium red or uncoupler. Moreover, subcellular regions that were relatively deficient in mitochondria demonstrated greater sensitivity to IP3 than regions of the cell with a high density of mitochondria. These data demonstrate that Ca2+ uptake by the mitochondria suppresses the local positive feedback effects of Ca2+ on the IP3R, giving rise to subcellular heterogeneity in IP3 sensitivity and IP3R excitability. Thus, mitochondria can play an important role in setting the threshold for activation and establishing the subcellular pattern of IP3-dependent [Ca2+]c signaling.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Calcium / metabolism*
  • Calcium Channels / metabolism*
  • Cell Compartmentation
  • Cells, Cultured
  • Cytosol / metabolism
  • Endoplasmic Reticulum / metabolism
  • Feedback
  • Humans
  • Inositol 1,4,5-Trisphosphate / metabolism*
  • Inositol 1,4,5-Trisphosphate Receptors
  • Mitochondria, Liver / drug effects
  • Mitochondria, Liver / metabolism*
  • Receptors, Cytoplasmic and Nuclear / metabolism*
  • Ruthenium Red / pharmacology
  • Signal Transduction

Substances

  • Calcium Channels
  • ITPR1 protein, human
  • Inositol 1,4,5-Trisphosphate Receptors
  • Receptors, Cytoplasmic and Nuclear
  • Ruthenium Red
  • Inositol 1,4,5-Trisphosphate
  • Calcium