Excitability and contractility of skeletal muscle engineered from primary cultures and cell lines

Am J Physiol Cell Physiol. 2001 Feb;280(2):C288-95. doi: 10.1152/ajpcell.2001.280.2.C288.

Abstract

The purpose of this study was to compare the excitability and contractility of three-dimensional skeletal muscle constructs, termed myooids, engineered from C2C12 myoblast and 10T1/2 fibroblast cell lines, primary muscle cultures from adult C3H mice, and neonatal and adult Sprague-Dawley rats. Myooids were 12 mm long, with diameters of 0.1-1 mm, were excitable by transverse electrical stimulation, and contracted to produce force. After approximately 30 days in culture, myooid cross-sectional area, rheobase, chronaxie, resting baseline force, twitch force, time to peak tension, one-half relaxation time, and peak isometric force were measured. Specific force was calculated by dividing peak isometric force by cross-sectional area. The specific force generated by the myooids was 2-8% of that generated by skeletal muscles of control adult rodents. Myooids engineered from C2C12-10T1/2 cells exhibited greater rheobase, time to peak tension, and one-half relaxation time than myooids engineered from adult rodent cultures, and myooids from C2C12-10T1/2 and neonatal rat cells had greater resting baseline forces than myooids from adult rodent cultures.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Animals
  • Animals, Newborn
  • Bioartificial Organs*
  • Cells, Cultured
  • Fibroblasts / physiology*
  • Isometric Contraction / physiology*
  • Mice
  • Muscle, Skeletal / physiology*
  • Rats