Effect of phage on survival of Salmonella enteritidis during manufacture and storage of cheddar cheese made from raw and pasteurized milk

J Food Prot. 2001 Jul;64(7):927-33. doi: 10.4315/0362-028x-64.7.927.

Abstract

The ability of Salmonella Enteritidis to survive in the presence of phage, SJ2, during manufacture, ripening, and storage of Cheddar cheese produced from raw and pasteurized milk was investigated. Raw milk and pasteurized milk were inoculated to contain 10(4) CFU/ml of a luminescent strain of Salmonella Enteritidis (lux) and 10(8) PFU/ml SJ2 phage. The milks were processed into Cheddar cheese following standard procedures. Cheese samples were examined for Salmonella Enteritidis (lux), lactic acid bacteria, molds and yeasts, coliforms, and total counts, while moisture, fat, salt, and pH values were also measured. Salmonella Enteritidis (lux) was enumerated in duplicate samples by surface plating on MacConkey novobiocin agar. Bioluminescent colonies of Salmonella Enteritidis were identified in the NightOwl molecular imager. Samples were taken over a period of 99 days. Counts of Salmonella Enteritidis (lux) decreased by 1 to 2 log cycles in raw and pasteurized milk cheeses made from milk containing phage. In cheeses made from milks to which phage was not added, there was an increase in Salmonella counts of about 1 log cycle. Lower counts of Salmonella Enteritidis (lux) were observed after 24 h in pasteurized milk cheese containing phage compared to Salmonella counts in raw milk cheese with phage. Salmonella Enteritidis (lux) survived in raw milk and pasteurized milk cheese without phage, reaching a final concentration of 10(3) CFU/g after 99 days of storage at 8 degrees C. Salmonella did not survive in pasteurized milk cheese after 89 days in the presence of phage. However, Salmonella counts of approximately 50 CFU/g were observed in raw milk cheese containing phage even after 99 days of storage. In conclusion, this study demonstrates that the addition of phage may be a useful adjunct to reduce the ability of Salmonella to survive in Cheddar cheese made from both raw and pasteurized milk.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Bacteriophages
  • Cheese / microbiology*
  • Colony Count, Microbial
  • Food Handling* / methods
  • Food Microbiology*
  • Hydrogen-Ion Concentration
  • Milk
  • Salmonella enteritidis / growth & development*
  • Salmonella enteritidis / virology
  • Time Factors
  • Viral Plaque Assay