Analysis of paramagnetic NMR spectra of triple-helical lanthanide complexes with 2,6-dipicolinic acid revisited: a new assignment of structural changes and crystal-field effects 25 years later

Inorg Chem. 2002 Mar 25;41(6):1436-45. doi: 10.1021/ic010801i.

Abstract

Variable-temperature (1)H and (13)C NMR measurements of the D(3)-symmetrical triple-helical complexes [Ln(L1-2H)(3)](3)(-) (L1 = pyridine-2,6-dicarboxylic acid; Ln = La-Lu) show evidence of dynamic intermolecular ligand-exchange processes whose activation energies depend on the size of the metal ion. At 298 K, the use of diastereotopic probes in [Ln(L3-2H)(3)](3)(-) (L3 = 4-ethyl-pyridine-2,6-dicarboxylic acid) shows that fast intramolecular P <==> M interconversion between the helical enantiomers occurs on the NMR time scale. Detailed analyses of the paramagnetic NMR hyperfine shifts according to crystal-field independent techniques demonstrate the existence of two different helical structures, one for large lanthanides (Ln = La-Eu) and one for small lanthanides (Ln = Tb-Lu), in complete contrast with the isostructurality proposed 25 years ago. A careful reconsideration of the original crystal-field-dependent analysis shows that an abrupt variation of the axial crystal-field parameter A(0)2<r (2)> parallels the structural change leading to some accidental compensation effects that prevent the detection of structural variations according to the classical one-nucleus method. Crystal structures in the solid state and density functional theory calculations in the gas phase provide structural models that rationalize the paramagnetic NMR data. A regular triple-helical structure is found for small lanthanides (Ln = Tb-Lu) in which the terdentate chelating ligands are rigidly tricoordinated to the metals. A flexible and distorted structure is evidenced for Ln = La-Eu in which the central pyridine rings interact poorly with the metal ion. The origin of the simultaneous variation of structural parameters and crystal-field and hyperfine constants near the middle of the lanthanide series is discussed together with the use of crystal-field-independent techniques for the interpretation of paramagnetic NMR spectra in axial lanthanide complexes.