Effect of included guest molecules on the normal state conductivity and superconductivity of beta''-(ET)(4)[(H(3)O)Ga(C(2)O(4))(3)].G (G = pyridine, nitrobenzene)

J Am Chem Soc. 2002 Oct 23;124(42):12430-1. doi: 10.1021/ja0273849.

Abstract

Normal state conductivity and superconductivity together with bulk magnetic susceptibility and magnetization measurements have been measured for two molecular charge-transfer salts: beta' '-(ET)4[(H3O)Ga(C2O4)3]G (ET = bis(ethylenedithio)tetrathiafulvalene, G = pyridine for compound I and nitrobenzene for compound II). With the exception of the included guest molecules (G) the crystal structures are almost identical. Both show minima in their electrical transport at 130 K for I and at 160 K for II, but at lower temperatures their behaviors differ markedly. The resistance of I reaches a maximum at 50 K with a further small peak at 2 K and possible superconductivity only below 2 K, whereas that of II increases continuously down to 7.5 K, where an abrupt transition to a superconducting state occurs.