Electrogenerated chemiluminescence 69: the tris(2,2'-bipyridine)ruthenium(II), (Ru(bpy)3(2+))/tri-n-propylamine (TPrA) system revisited-a new route involving TPrA*+ cation radicals

J Am Chem Soc. 2002 Dec 4;124(48):14478-85. doi: 10.1021/ja027532v.

Abstract

The reaction occurring on electrooxidation of Ru(bpy)(3)(2+) (bpy = 2,2'-bipyridine) and tri-n-propylamine (TPrA) leads to the production of Ru(bpy)(3)(2+) and light emission. The accepted mechanism of this widely used reaction involves the reaction of Ru(bpy)(3)(3+) and a reduced species derived from the free radical of the TPrA. However, this mechanism does not account for many of the observed features of this reaction. A new route involving the intermediacy of TPrA cation radicals (TPrA(*+)) in the generation of Ru(bpy)(3)(2+) was established, based on results of scanning electrochemical microscopy (SECM)-electrogenerated chemiluminescence (ECL) experiments, as well as cyclic voltammetry simulations. A half-life of approximately 0.2 ms was estimated for TPrA(*+) in neutral aqueous solution. Direct evidence for TPrA(*+) in this medium was obtained via flow cell electron spin resonance (ESR) experiments at approximately 20 degrees C. The ESR spectra of the TPrA(*+) species consisted of a relatively intense and sharp septet with a splitting of approximately 20 G and a g value of 2.0038.