Biomechanical properties of knee articular cartilage

Biorheology. 2003;40(1-3):133-40.

Abstract

Structure and properties of knee articular cartilage are adapted to stresses exposed on it during physiological activities. In this study, we describe site- and depth-dependence of the biomechanical properties of bovine knee articular cartilage. We also investigate the effects of tissue structure and composition on the biomechanical parameters as well as characterize experimentally and numerically the compression-tension nonlinearity of the cartilage matrix. In vitro mechano-optical measurements of articular cartilage in unconfined compression geometry are conducted to obtain material parameters, such as thickness, Young's and aggregate modulus or Poisson's ratio of the tissue. The experimental results revealed significant site- and depth-dependent variations in recorded parameters. After enzymatic modification of matrix collagen or proteoglycans our results show that collagen primarily controls the dynamic tissue response while proteoglycans affect more the static properties. Experimental measurements in compression and tension suggest a nonlinear compression-tension behavior of articular cartilage in the direction perpendicular to articular surface. Fibril reinforced poroelastic finite element model was used to capture the experimentally found compression-tension nonlinearity of articular cartilage.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Biomechanical Phenomena
  • Cartilage, Articular / physiology*
  • Cattle
  • Collagen / physiology
  • Finite Element Analysis
  • Knee Joint / physiology*
  • Stress, Mechanical

Substances

  • Collagen