Evidence for functionally distinct synaptic NMDA receptors in ventromedial versus dorsolateral striatum

J Neurophysiol. 2003 Jan;89(1):69-80. doi: 10.1152/jn.00342.2002.

Abstract

N-methyl-D-aspartate receptors (NMDARs) are comprised of different subunits. NR2 subunits confer different pharmacological and biophysical properties to NMDARs. Although NR2B subunit expression is uniform throughout striatum, NR2A subunit expression is greater laterally. Pharmacologically isolated NMDAR-mediated excitatory postsynaptic currents (NMDAR-EPSCs) were elicited using minimal local stimulation and recorded in the whole cell configuration to test the hypothesis that biophysical and pharmacological properties of NMDAR-EPSCs of striatal neurons would vary as a function of their location in adult rat striatum. We observed that the decay-time kinetics of NMDAR-EPSCs are significantly slower in neurons of ventromedial versus dorsolateral striatum. Whereas ifenprodil did not differentially affect NMDAR-EPSCs in these regions, application of either glycine or D-serine increased the peak current of NMDAR-EPSCs selectively in dorsolateral striatum. These data provide evidence for functionally distinct NMDARs in the same neuron type in the same brain region of the adult rodent brain. These data thus suggest that the nature of synaptic processing of excitatory input is different in the ventromedial and dorsolateral striatum of the adult rodent brain, regions differentially involved in limbic versus sensorimotor processes, respectively.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Age Factors
  • Animals
  • Animals, Newborn
  • Corpus Striatum / chemistry
  • Corpus Striatum / cytology
  • Corpus Striatum / physiology*
  • Excitatory Amino Acid Antagonists / pharmacology
  • Excitatory Postsynaptic Potentials / drug effects
  • Excitatory Postsynaptic Potentials / physiology
  • Glycine / pharmacology
  • Kinetics
  • Limbic System / cytology
  • Limbic System / physiology
  • Male
  • Motor Neurons / physiology
  • Neurons, Afferent / physiology
  • Organ Culture Techniques
  • Piperidines / pharmacology
  • Rats
  • Rats, Sprague-Dawley
  • Receptors, N-Methyl-D-Aspartate / analysis
  • Receptors, N-Methyl-D-Aspartate / antagonists & inhibitors
  • Receptors, N-Methyl-D-Aspartate / physiology*
  • Serine / pharmacology
  • Synapses / physiology*

Substances

  • Excitatory Amino Acid Antagonists
  • NR2A NMDA receptor
  • NR2B NMDA receptor
  • Piperidines
  • Receptors, N-Methyl-D-Aspartate
  • Serine
  • ifenprodil
  • Glycine