IGBT-based kilovoltage pulsers for ultrasound measurement applications

IEEE Trans Ultrason Ferroelectr Freq Control. 2003 Dec;50(12):1722-8. doi: 10.1109/tuffc.2003.1256313.

Abstract

Two high-voltage pulser designs are presented that offer advantages in some ultrasound measurement applications, such as driving thick ultrasonic source transducers used for broadband measurements of attenuation or hydrophone frequency response and directivity. The pulsers use integrated gate bipolar transistors (IGBTs) as the switching devices, and in one design an output voltage pulse is produced that has a peak amplitude nearly twice that of the supply voltage. The pulsers are inexpensive and relatively easy to construct. The power supply need only provide the average current to charge the capacitors, as opposed to the much higher peak pulse current. With a 1200 V supply and a pulse repetition frequency of 200 Hz, the nondoubling and doubling pulsers provided peak voltages of greater than 1100 V and 2200 V, respectively, into loads ranging from 50 omega to 500 omega. For a 50 omega load, slewing rates of 38 V/ns and 23 V/ns were measured for the nondoubling and doubling pulsers, respectively. For a 500 omega load these values were 56 V/ns and 36 V/ns.