Magnetic studies on hexahalorhenate(IV) salts of ferrocenium cations [Fe(C5R5)2]2[ReX6] (R = H, CH3; X = Cl, Br, I)

Inorg Chem. 2004 May 3;43(9):3013-9. doi: 10.1021/ic030302c.

Abstract

The hexahalorhenate(IV) salts of formula [Fe(C5H5)2]2[ReX6], with X = Cl (1), Br (2), and I (3), and [Fe(C5Me5)2]2[ReX6], with X = Cl (4), Br (5), and I (6) ([Fe(C5Me5)2]+ = decamethylferrocenium cation), have been synthesized and the structures of 1, 2, and 4 determined by single-crystal X-ray diffraction. 1, 2, and 4 crystallize in the orthorhombic system, space groups Pbca (1 and 2) and Ibam (4), with a = 14.099(2) A, b = 16.125(2) A, and c = 22.133(15) A, for 1, a = 14.317(3) A, b = 16.848(3) A, and c = 22.099(2) A for 2, and a = 15.8583(5) A, b = 15.9368(5) A, and c = 16.9816(6) A for 4. The three structures are made up of discrete [ReX6]2- anions and ferrocenium cations held together by electrostatic forces. There are anion-anion contacts in 1 and 2 but only through one direction. The [ReX6]2- octahedra are arranged along the y axis forming chains of Re and X atoms, -Re-X...X-Re-X...X-Re-, where the intermolecular X...X distances are shorter than the van der Waals distances. A somewhat greater separation between the anions occurs in 4. The magnetic properties of 1-6 were investigated in the temperature range 2.0-300 K. 1, 2, 4, and 5 exhibit an antiferromagnetic coupling between the anions, whereas a ferromagnetic coupling between anions and cations is the dominant interaction in 3. 6 behaves as a magnetically isolated compound, its susceptibility being the simple addition of the independent contributions of the uncoupled paramagnetic cations and anions.