Synthesis and evaluation of scaffolds prepared from chitosan fibers for potential use in cartilage tissue engineering

Biomed Sci Instrum. 2004:40:117-22.

Abstract

Tissue engineering concepts and methodologies that employ biocompatible matrices or scaffolds have the potential to meet needs encountered in the repair of defects in articular cartilage. A desirable design parameter in the tissue engineering of cartilage in vitro is the development of seeded scaffolds with appropriate structure, composition, mechanical properties and durability that are similar to normal articular cartilage. Previous methods that have used freeze drying and lyophilization techniques to make foams and hydrogels have not met the scaffold characteristics (porosity, compressive elastic modulus, permeability and viscoelastic properties), which are required of scaffolds slated for use in cartilage tissue engineering applications. Thus there is an impetus to design and develop biomimetic scaffolds that mimic the native ECM of articular cartilage, and distribute strain in a bioresponsive manner to signal seeded chondrocytes to synthesize and organize ECM to result in material properties that are in range of natural cartilage. We have employed the method of electrospinning to prepare scaffolds with oriented and random fiber alignment.

Publication types

  • Comparative Study
  • Evaluation Study
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Biomimetic Materials / chemical synthesis
  • Biomimetic Materials / chemistry*
  • Cartilage / growth & development*
  • Cell Adhesion / physiology
  • Cell Division / physiology
  • Cells, Cultured
  • Chitin / analogs & derivatives*
  • Chitin / chemical synthesis
  • Chitin / chemistry*
  • Chitin / physiology*
  • Chitin / ultrastructure
  • Chitosan
  • Chondrocytes / cytology*
  • Chondrocytes / physiology*
  • Dogs
  • Extracellular Matrix / physiology*
  • Extracellular Matrix / ultrastructure
  • Materials Testing
  • Membranes, Artificial
  • Tensile Strength
  • Tissue Engineering / methods*

Substances

  • Membranes, Artificial
  • Chitin
  • Chitosan