Visually perceived eye level: changes induced by a pitched-from-vertical 2-line visual field

J Exp Psychol Hum Percept Perform. 1992 Feb;18(1):257-89. doi: 10.1037//0096-1523.18.1.257.

Abstract

The physical elevation corresponding to visually perceived eye level (VPEL) changes linearly with the pitch of a visual field. Deviations from true eye level average more than 0.5 times the angle of pitch over a 65 degrees pitch range. A visual field consisting of 2 dim, isolated vertical lines in darkness is more than 4/5 as effective as that of a complexly structured visual field; 2 horizontal lines have a small and inconsistent effect. Differences in influence on VPEL between pitched-from-vertical and horizontal lines were predicted from an analysis that extracted differences in retinal perspective resulting from changes in pitch. The Great Circle Model (GCM), based on a spherical approximation to the erect, stationary eye, predicts the present results and results of 8 other sets of experiments. The model treats the influence of a single line on VPEL as systematically related to the elevation of the intersection between the great circle containing the image of the line and the central vertical retinal meridian; generalized GCM combines visual inputs with inputs from the body-referenced mechanism and maps onto the central nervous system.

Publication types

  • Research Support, U.S. Gov't, Non-P.H.S.
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Darkness
  • Humans
  • Models, Theoretical
  • Posture
  • Space Perception
  • Visual Fields*
  • Visual Perception*