Comparison of the material properties of PMMA and glass-ionomer based cements for use in orthopaedic surgery

J Mater Sci Mater Med. 2001 May;12(5):453-60. doi: 10.1023/a:1011261322881.

Abstract

The intrinsic benefits of low exotherm and bioactivity have generated interest in utilizing glass-ionomer cements (GIC) as a bone cement replacement in orthopaedic surgery. This paper is concerned with evaluating the mechanical properties of compressive strength, flexural strength, and fracture toughness for two traditional GICs, one resin-modified GIC (an experimental bone cement) and two polymethylmethacrylate (PMMA) cement systems. To determine the suitability of a GIC system for use in the clinical orthopaedic setting, the additional characteristics of setting exotherm and setting time have also been evaluated. The characterization of these two vastly different cement systems has raised some concern as to the applicability of using the current orthopaedic standards for the testing of GIC systems. In particular, issues relating to the strain rate dependence of PMMA cement and the exothermic basis for determining setting time are not applicable as these factors are not characteristic of GIC systems. Whilst the intrinsic benefits of current GIC systems are well understood and generally accepted, this study has shown their intrinsic mechanical properties to be inferior to current PMMA cements. Improvement in the mechanical properties of traditional GICs have been achieved with the addition of a resin component (HEMA).