Texture formation under phase ordering and phase separation in polymer-liquid crystal mixtures

J Chem Phys. 2004 Nov 15;121(19):9733-43. doi: 10.1063/1.1804494.

Abstract

Computational modeling of texture formation in coupled phase separation-phase ordering processes in polymer/liquid crystal mixtures is performed using a unified model based on the nematic tensor order parameter and gradient orientation elasticity. The computational methods are able to resolve defect nucleation, defect-defect interactions, and defect-particle interactions, as well as global and local morphological features in the concentration and order parameter spatiotemporal behavior. Biphasic structures corresponding to polymer dispersed liquid crystals (PDLCs), crystalline filled nematic (CFNs), and random filled nematics (RFNs) are captured and analyzed using liquid crystal defect physics and structure factors. Under spinodal decomposition due to concentration fluctuations, the PDLC structure emerges, and the nucleation and repulsive interaction of defects within nematic droplets leads to bipolar nematic droplets. Under spinodal decomposition due to ordering fluctuations, the CFNs structure emerges, and the stable polymer droplet crystal is pinned by a lattice of topological defects. For intermediate cases, where the mixture is unstable to both concentration and nematic order fluctuations, the RFN structure emerges, and polymer droplets and fibrils are pinned by a defect network, whose density increases with the curvature of the polymer-liquid crystal interface. The simulations provide an information of the role of topological defects on phase separation-phase ordering processes in polymer-liquid crystal mixtures.