Distribution in brain of liposomes after convection enhanced delivery; modulation by particle charge, particle diameter, and presence of steric coating

Brain Res. 2005 Feb 28;1035(2):139-53. doi: 10.1016/j.brainres.2004.12.007. Epub 2005 Jan 28.

Abstract

We have investigated the role of diameter, charge, and steric shielding on the brain distribution of liposomes infused by convection enhanced delivery (CED) using both radiolabeled and fluorescent-labeled particles. Liposomes of 40 and 80-nm diameter traveled the same distance but penetrated significantly less than a 10-kDa dextran; whereas 200-nm-diameter liposomes penetrated less than 80 nm liposomes. A neutral liposome shielded by polyethylene glycol (PEG; 2 kDa; 10% by mole) penetrated significantly farther than an unshielded liposome. Even when shielded with PEG, positive surface charge (10% by mole) significantly reduced the penetration radius compared to a neutral or negative charged liposome (10% by mole). A mathematical CED model including a term for liposome cell binding was applied to analyze the radius of particle penetration. Neutral liposomes had a binding constant of k=0.0010+/-0.0002 min-1, whereas for positive charged liposomes k increased 50-fold. The binding constant was independently verified using a degradable lipid radiolabel that eliminated from the brain with a 9.9+/-2.0 h half-life, equivalent to the calculated elimination constant k=0.0012+/-0.0002 min-1. During CED, liposomes accumulated in a subpopulation of perivascular cells within the brain. A non-degradable lipid radiolabel showed that lipid components remained within these perivascular brain cells for at least 2 days. To reduce this uptake, 100-fold molar excess of non-labeled liposomes were co-infused with labeled liposomes, which significantly increased liposome penetration. These studies suggest that optimization of therapeutic CED using particles such as drug-loaded liposomes, polymeric nanoparticles, non-viral DNA complexes, and viruses will require a strategy to overcome particle binding and clearance by cells within the CNS.

Publication types

  • Comparative Study
  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Animals
  • Brain / drug effects
  • Brain / metabolism*
  • Convection*
  • Drug Delivery Systems / instrumentation
  • Drug Delivery Systems / methods*
  • Liposomes / administration & dosage*
  • Liposomes / metabolism*
  • Particle Size
  • Rats
  • Rats, Nude

Substances

  • Liposomes