Ligated chlorophyll cation radicals: Their function in photosystem II of plant photosynthesis

Proc Natl Acad Sci U S A. 1979 Sep;76(9):4170-4. doi: 10.1073/pnas.76.9.4170.

Abstract

Magnesium tetraphenylchlorin, a synthetic model for chlorophyll, exhibits significant variations in the unpaired spin densities of its cation radicals with concomitant changes in oxidation potentials as a function of solvent and axial ligand. Similar effects are observed for chlorophyll (Chl) a and its cation radicals. Oxidation potentials for Chl --> Chl(+.) as high as +0.9 V (against a normal hydrogen electrode) are observed in nonaqueous solvents, with linewidths of the electron spin resonance signals of monomeric Chl(+.) ranging between 9.2 and 7.8 G in solution. These changes in electronic configuration and ease of oxidation are attributed to mixing of two nearly degenerate ground states of the radicals theoretically predicted by molecular orbital calculations. Comparison of the properties of chlorophyll in vitro with the optical, redox, and magnetic characteristics attributed to P-680, the primary donor of photosystem II which mediates oxygen evolution in plant photosynthesis, leads us to suggest that P-680 may be a ligated chlorophyll monomer whose function as a phototrap is determined by interactions with its (protein?) environment.