The Effect of Temperature on the Level and Biosynthesis of Unsaturated Fatty Acids in Diacylglycerols of Brassica napus Leaves

Plant Physiol. 1988 Aug;87(4):904-10. doi: 10.1104/pp.87.4.904.

Abstract

Experiments on the effects of temperature on the levels of unsaturated fatty acids and their rates of desaturation in Brassica napus leaf lipids have shown that significant differences occur in the composition of all diacylglycerols in the leaf between plants grown at high and low temperatures. In the major thylakoid diacylglycerols, monogalactosyl-diacylglycerol and digalactosyldiacylglycerol, not only is there an increase in the level of unsaturation at low temperatures, but there is a change in the balance between molecular species of chloroplastic origin (16/18C) and cytosolic origin (18/18C). Radioactivity tracer data indicate that at low temperatures there are two distinct phases of desaturation in the fatty acids of the major diacylglycerols of these leaves. A rapid phase, which appears in plants grown at low temperatures and results in the desaturation of palmitic acid to hexadecadienoic acid and oleic acid to linoleic acid may explain the high levels of unsaturated fatty acids found in the leaf diacylglycerols from plants grown at low temperatures. The appearance of this rapid phase is controlled by the temperature at which the plant is grown and is not subject to rapid variations in environmental temperature.