Effect of nitric oxide synthase inhibition during post-hypoxic reoxygenation on Bax and Bcl-2 protein expression and DNA fragmentation in neuronal nuclei of newborn piglets

Brain Res. 2006 Jul 26;1101(1):20-8. doi: 10.1016/j.brainres.2006.05.021. Epub 2006 Jun 16.

Abstract

Previous studies have shown that cerebral tissue hypoxia results in increased generation of oxygen-free radicals including nitric oxide (NO), expression of the proapoptotic protein Bax and fragmentation of nuclear DNA. The present study tests the hypothesis that post-hypoxic reoxygenation for 6 h following hypoxia (FiO2=0.06 for 1 h) results in continued hypoxia-induced, NO-mediated expression of the Bax protein and nuclear DNA fragmentation in the cerebral cortex of newborn piglets. Piglets were divided into normoxic (Nx), hypoxic (Hx, FiO2=0.06 for 1 h), hypoxic with 6 h reoxygenation (Hx+reox) and hypoxic with 6 h reoxygenation injected with 7-nitroindazole sodium salt (7-NINA), a selective nNOS inhibitor, immediately after hypoxia (Hx+7-NINA). Cerebral tissue hypoxia was documented by levels of ATP and phosphocreatine (PCr). Bax and Bcl-2 were analyzed by Western blot and DNA fragmentation was determined by agarose gel electrophoresis. ATP and PCr values in Hx, Hx+reox and Hx+7-NINA were significantly different from Nx (P<0.05 vs. Nx). Bax protein (ODxmm2) was 128.9+/-38.7 in Nx; 223.6+/-45.8 in Hx (P<0.05 vs. Nx); 340.5+/-73.2 in Hx+reox (P<0.05 vs. Nx, Hx and Hx+7-NINA); and 202.2+/-34.8 in Hx+7-NINA (P=NS vs. Hx). Bcl-2 protein (ODxmm2) was 14.9+/-2.7 in Nx, 12.4+/-2.1 in Hx, (P<0.05 vs. Nx), 15.7+/-3.8 in Hx+reox, (P<0.05 vs. Hx) and 13.1+/-2.2 in Hx+7-NINA (P=NS among groups). Nuclear DNA fragmentation (ODxmm2) was 147+/-15 in Nx; 797+/-84 in Hx (P<0.05 vs. Nx); 1134+/-127 in Hx+reox (P<0.05 vs. Nx, Hx and Hx+7-NINA); and 778+/-146 in Hx+7-NINA (P=NS vs. Hx, P<0.05 vs. Hx+reox). The results show that post-hypoxic reoxygenation results in increased expression of Bax protein without affecting Bcl-2 protein and increased fragmentation of nuclear DNA, which are prevented by 7-NINA. We conclude that during post-hypoxic reoxygenation the increase in Bax protein expression and fragmentation of nuclear DNA are mediated by NO derived from nNOS. We propose that in addition to NO-mediated nuclear DNA damage, the hypoxia-induced increased ratio of Bax/Bcl-2 protein will lead to caspase-activated cascade of hypoxic neuronal death during post-hypoxic reoxygenation.

Publication types

  • Comparative Study
  • Research Support, N.I.H., Extramural

MeSH terms

  • Analysis of Variance
  • Animals
  • Animals, Newborn
  • Blotting, Southern / methods
  • Blotting, Western / methods
  • Cell Nucleus / drug effects
  • Cell Nucleus / metabolism*
  • DNA Fragmentation / drug effects
  • DNA Fragmentation / physiology*
  • Gene Expression Regulation, Developmental / drug effects
  • Gene Expression Regulation, Developmental / physiology
  • Hypoxia, Brain / metabolism*
  • Hypoxia, Brain / physiopathology
  • Indazoles / pharmacology
  • Neurons / cytology
  • Nitric Oxide Synthase / antagonists & inhibitors*
  • Oxygen / pharmacology
  • Proto-Oncogene Proteins c-bcl-2 / metabolism*
  • Swine
  • bcl-2-Associated X Protein / metabolism*

Substances

  • Indazoles
  • Proto-Oncogene Proteins c-bcl-2
  • bcl-2-Associated X Protein
  • Nitric Oxide Synthase
  • Oxygen
  • 7-nitroindazole