Estimation of clamping force in high-tension bolts through ultrasonic velocity measurement

Ultrasonics. 2006 Dec 22:44 Suppl 1:e1339-42. doi: 10.1016/j.ultras.2006.05.190. Epub 2006 Jun 9.

Abstract

The estimation of clamping force has been regarded as the main issue in the maintenance of high-tension bolts. This paper proposes a method which uses the dependency of ultrasonic velocity on stress based on the nonlinear elastic effect. The variation of ultrasonic velocity in the range of actual stress acting in the bolt is very small so that the precise measurement of ultrasonic velocity is needed. In this paper, we adopt a method to measure ultrasonic velocity, where the TOF (time of flight) of a tone-burst ultrasonic wave is precisely measured by using the phase detection technique. In order to verify the usefulness of the proposed method, two kinds of experiments are carried out. The first one measures ultrasonic velocity when the bolt is stressed by the tension tester, and from this, the exact axial force acting in the bolt can be determined. The results show good agreement with the expected linear relationship between ultrasonic velocity and axial stress. The second experiment measures ultrasonic velocity when the bolt is stressed by the torque wrench. The results show that ultrasonic velocity decreased as the torque increased, which is identical to the theoretically expected tendency. From these results, it can be said that the proposed method is adequate in evaluating clamping force in high-tension bolts.