Electrospun micro- and nanofibers for sustained delivery of paclitaxel to treat C6 glioma in vitro

Pharm Res. 2006 Aug;23(8):1817-26. doi: 10.1007/s11095-006-9036-z.

Abstract

Purpose: The present study aims to develop electrospun PLGA-based micro- and nanofibers as implants for the sustained delivery of anticancer drug to treat C6 glioma in vitro.

Methods: PLGA and an anticancer drug--paclitaxel-loaded PLGA micro- and nanofibers were fabricated by electrospinning and the key processing parameters were investigated. The physical and chemical properties of the micro- and nanofibers were characterized by various state-of-the-art techniques, such as scanning electron microscope and field emission scanning electron microscope for morphology, X-ray photoelectron spectroscopy for surface chemistry, gel permeation chromatogram for molecular weight measurements and differential scanning calorimeter for drug physical status. The encapsulation efficiency and in vitro release profile were measured by high performance liquid chromatography. In addition, the cytotoxicity of paclitaxel-loaded PLGA nanofibers was evaluated using 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide MTT) assay on C6 glioma cell lines.

Results: PLGA fibers with diameters of around several tens nanometers to 10 microm were successfully obtained by electrospinning. Ultrafine fibers of around 30 nm were achieved after addition of organic salts to dilute polymer solution. The encapsulation efficiency for paclitaxel-loaded PLGA micro- and nanofibers was more than 90%. DSC results suggest that the drug was in the solid solution state in the polymeric micro- and nanofibers. In vitro release profiles suggest that paclitaxel sustained release was achieved for more than 60 days. Cytotoxicity test results suggest that IC50 value of paclitaxel-loaded PLGA nanofibers (36 microg/ml, calculated based on the amount of paclitaxel) is comparable to the commercial paclitaxel formulation-Taxol.

Conclusions: Electrospun paclitaxel-loaded biodegradable micro- and nanofibers may be promising for the treatment of brain tumour as alternative drug delivery devices.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Antineoplastic Agents, Phytogenic / administration & dosage*
  • Antineoplastic Agents, Phytogenic / therapeutic use*
  • Brain Neoplasms / drug therapy*
  • Cell Line, Tumor
  • Cell Survival / drug effects
  • Chemical Phenomena
  • Chemistry, Pharmaceutical
  • Chemistry, Physical
  • Chromatography, Gel
  • Delayed-Action Preparations
  • Drug Compounding
  • Excipients
  • Glioma / drug therapy*
  • Humans
  • Lactic Acid
  • Microscopy, Confocal
  • Microscopy, Electron, Scanning
  • Nanoparticles*
  • Paclitaxel / administration & dosage*
  • Paclitaxel / therapeutic use*
  • Polyglycolic Acid
  • Polylactic Acid-Polyglycolic Acid Copolymer
  • Polymers
  • Spectrometry, X-Ray Emission

Substances

  • Antineoplastic Agents, Phytogenic
  • Delayed-Action Preparations
  • Excipients
  • Polymers
  • Polylactic Acid-Polyglycolic Acid Copolymer
  • Polyglycolic Acid
  • Lactic Acid
  • Paclitaxel