Identification of lipid aggregate structures on TiO2 surface using headgroup IR bands

J Phys Chem B. 2005 Mar 17;109(10):4539-44. doi: 10.1021/jp046042h.

Abstract

Attenuated total reflection-Fourier transform infrared (ATR-FTIR) spectroscopy was used to study the nature of the dipalmitoylphosphatidylcholine (DPPC) aggregated structures adsorbed on TiO(2). DPPC molecules were assembled on TiO(2) using Langmuir-Blodgett (LB) deposition methods or by directly flowing the DPPC liposome solution across the TiO(2)-coated ATR crystal. We found that there is a direct correlation between the intensity and frequency position of the zwitterionic headgroup IR bands and the nature of LB films. Specifically, we have shown that the bands due to PO(2)(-) modes are sensitive to changes in the degree of hydration of the LB films and that the symmetric deformation vibrational mode (delta(s) (+)N-CH(3)) is sensitive to interaction with oppositely charged surface sites. Using this information, we found that the liposomes adsorbed on TiO(2) remain intact as vesicles and that the vesicles are stable and not removed in flowing water. We have also shown that the antisymmetric deformation vibrational (delta(as) (+)N-CH(3)) modes are sensitive to changes in lateral-lateral DPPC interactions. This information was used to show that there is a lateral interaction between each positively charged (+)N(CH(3))(3) headgroup and negatively charged PO(2)(-) headgroup of the adjacent DPPC molecule in the adsorbed vesicles and LB films. This study provides a framework for the use of this IR technique in studies of adsorption and transport of molecules across membrane interfaces.

Publication types

  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • 1,2-Dipalmitoylphosphatidylcholine / chemistry
  • Adsorption
  • Crystallization
  • Lipids / chemistry*
  • Liposomes
  • Solvents
  • Spectrophotometry, Infrared
  • Spectroscopy, Fourier Transform Infrared
  • Titanium / chemistry*

Substances

  • Lipids
  • Liposomes
  • Solvents
  • titanium dioxide
  • 1,2-Dipalmitoylphosphatidylcholine
  • Titanium