Nanoparticle-mirror sandwich substrates for surface-enhanced Raman scattering

J Phys Chem B. 2005 Sep 29;109(38):17936-42. doi: 10.1021/jp053432a.

Abstract

Sandwich surface-enhanced Raman scattering (SERS) substrates (3S) utilizing coupling between continuous metal films and plasmonic particles were fabricated using silver mirrors, electrochemically roughened films, and various sizes of silver nanoparticles. The effect of excitation wavelength and nanoparticle size on SERS spectra of poly(vinylpyridine), selected as a model compound, was studied to determine the optimum conditions for the strongest SERS signal. The Raman enhancement resulted from the plasmon coupling of silver nanoparticles to the underlying continuous film as well as the lateral plasmon coupling between the silver nanoparticles. The formation of the charge transfer complex was also observed. The 3S configuration was used to obtain SERS spectra of dipicolinic acid (DPA), a chemical signature for Bacillus anthracis.