Continuous separation of particles using a microfluidic device equipped with flow rate control valves

J Chromatogr A. 2006 Sep 15;1127(1-2):214-20. doi: 10.1016/j.chroma.2006.05.020. Epub 2006 Aug 7.

Abstract

We propose herein an improved microfluidic system for continuous and precise particle separation. We have previously proposed a method for particle separation called "pinched flow fractionation." Using the previously reported method, particles can be continuously separated according to differences in their diameters, simply by introducing liquid flows with and without particles into a specific microchannel structure. In this study, we incorporated PDMS membrane microvalves for flow rate control into the microfluidic device to improve the separation accuracy. By adjusting the flow rates distributed to each outlet, target particles could be precisely collected from the desired outlet. We succeeded in separating micron and submicron-size polymer particles. This method can be used widely for continuous and precise separation of various kinds of particles, and can function as an important part of microfluidic systems.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Microfluidic Analytical Techniques / instrumentation*
  • Microfluidic Analytical Techniques / methods