A citric acid-based hydroxyapatite composite for orthopedic implants

Biomaterials. 2006 Dec;27(34):5845-54. doi: 10.1016/j.biomaterials.2006.07.042. Epub 2006 Aug 21.

Abstract

We describe a novel approach to process bioceramic microparticles and poly(diol citrates) into bioceramic-elastomer composites for potential use in orthopedic surgery. The composite consists of the biodegradable elastomer poly(1,8-octanediol-citrate) (POC) and the bioceramic hydroxyapatite (HA). The objective of this work was to characterize POC-HA composites and assess the feasibility of fabricating tissue fixation devices using machining and molding techniques. The mechanical properties of POC-HA composites with HA (40, 50, 60, 65wt.%) were within the range of values reported for tissue fixation devices (for POC-HA 65wt.%, S(b)=41.4+/-3.1, E(b)=501.7+/-40.3, S(c)=74.6+/-9.0, E(c)=448.8+/-27.0, S(t)=9.7+/-2.3, E(t)=334.8+/-73.5, S(s)=27.7+/-2.4, T(s)=27.3+/-4.9, all values in MPa). At 20 weeks, the weight loss of POC-HA composites ranged between 8 and 12wt.%, with 65wt.% HA composites degrading the slowest. Exposure of POC-HA to simulated body fluid resulted in extensive mineralization in the form of calcium phosphate with Ca/P of 1.5-1.7 similar to bone. POC-HA supported osteoblast adhesion in vitro and histology results from POC-HA samples that were implanted in rabbit knees for 6 weeks suggest that the composite is biocompatible. Synthesis of POC-HA is easy and inexpensive, does not involve harsh solvents or initiators, and the mechanical properties of POC-HA with 65wt.% HA are suitable for the fabrication of potentially osteoconductive bone screws.

Publication types

  • Evaluation Study

MeSH terms

  • Animals
  • Bone Screws*
  • Bone Substitutes / chemistry*
  • Bone Substitutes / metabolism*
  • Calcification, Physiologic
  • Citric Acid / analogs & derivatives*
  • Citric Acid / chemistry
  • Citric Acid / metabolism
  • Durapatite / chemistry
  • Durapatite / metabolism
  • Humans
  • Materials Testing
  • Orthopedics
  • Osteoblasts / cytology
  • Osteoblasts / physiology
  • Rabbits
  • Stress, Mechanical

Substances

  • Bone Substitutes
  • POC-HA composite
  • Citric Acid
  • Durapatite