Analysis for perfluorocarboxylic acids/anions in surface waters and precipitation using GC--MS and analysis of PFOA from large-volume samples

Environ Sci Technol. 2006 Oct 15;40(20):6405-10. doi: 10.1021/es061131o.

Abstract

The presence of perfluorocarboxylates (PFCAs) in the environment is of increasing concern, following the discovery of perfluoroalkyl acids (PFAs) in wildlife and human samples. Here we report a method forthe determination of (C2-C9) PFCAs by preparing the 2,4-difluoroanilides of the acids and analyzing by using GC-MS. Detector response was linear over the range 0.1 -1000 pg of each perfluoroalkyl anilide. A complete suite of PFCAs can be analyzed in an individual sample with the PFCAs detected at levels similar to or lower than those determined by other methods. For a comparison between the present method and the more common LC-MS/MS method, 10 replicates of a sewage treatment plant discharge were analyzed for perfluoro-octanoic acid (PFOA) using both methods. Results were nearly identical with low standard deviation (GC-MS 30.9 +/- 1.88 ng/L; while the LC-MS/MS 34.7 +/- 3.05 ng/L). PFCA concentrations for water samples collected from depth profiles in mid-Lake Ontario were analyzed by GC-MS with most PFCAs (C2-C8) present above the detection limit (0.5 ng/L). Major PFCAs were trifluoroacetate (TFA) (100 ng/L) and perfluorobutanoate (PFBA) (> 5 ng/L). Results for PFOA (2.5 ng/L) were in good agreement with recent analyses by LC-MS/MS. PFCAs were also detected in the precipitation samples at concentrations lower than those of the samples from the lake profiles or sewage treatment plants (STPs) effluent. Since PFOA levels may be less than the lower detection limit (<0.5 ng/L) in 1 L samples, a method for large volumes using XAD-7 resin was developed that allows detection to 0.01 ng/L. This method was applied to Lake Superior samples which produced good agreement for C6-C9 PFCAs between regular analysis (GC-MS) and the XAD-7 followed by GC-MS analysis.

MeSH terms

  • Anions / analysis*
  • Carboxylic Acids / analysis*
  • Carboxylic Acids / chemistry
  • Chemical Precipitation
  • Environmental Monitoring / methods
  • Fluorocarbons / analysis*
  • Fluorocarbons / chemistry
  • Gas Chromatography-Mass Spectrometry / methods*
  • Reproducibility of Results
  • Water Pollutants, Chemical / analysis

Substances

  • Anions
  • Carboxylic Acids
  • Fluorocarbons
  • Water Pollutants, Chemical