Forward and reverse product decompositions of depolarizing Mueller matrices

Opt Lett. 2007 Mar 15;32(6):689-91. doi: 10.1364/ol.32.000689.

Abstract

Because of the noncommutativity of the matrix product, the three factors into which a depolarizing Mueller matrix is decomposed, i.e., the diattenuator, the retarder, and the depolarizer, form six possible products grouped into two families, as already pointed out [J. Opt. Soc. Am. A13, 1106 (1996); Opt. Lett.29, 2234 (2004)]. We show that, apart from the generalized polar decomposition generating the first family of products, there exists a dual decomposition belonging to the second family. The mathematical procedure for this dual decomposition is given, and the symmetry existing between the two decompositions is pointed out. The choice of the most appropriate decomposition for a given practical optical arrangement is likewise discussed and illustrated by simple examples.