Fish biorobotics: kinematics and hydrodynamics of self-propulsion

J Exp Biol. 2007 Aug;210(Pt 16):2767-80. doi: 10.1242/jeb.000265.

Abstract

As a result of years of research on the comparative biomechanics and physiology of moving through water, biologists and engineers have made considerable progress in understanding how animals moving underwater use their muscles to power movement, in describing body and appendage motion during propulsion, and in conducting experimental and computational analyses of fluid movement and attendant forces. But it is clear that substantial future progress in understanding aquatic propulsion will require new lines of attack. Recent years have seen the advent of one such new avenue that promises to greatly broaden the scope of intellectual opportunity available to researchers: the use of biorobotic models. In this paper we discuss, using aquatic propulsion in fishes as our focal example, how using robotic models can lead to new insights in the study of aquatic propulsion. We use two examples: (1) pectoral fin function, and (2) hydrodynamic interactions between dorsal and caudal fins. Pectoral fin function is characterized by considerable deformation of individual fin rays, as well as spanwise (along the length) and chordwise (across the fin) deformation and area change. The pectoral fin can generate thrust on both the outstroke and instroke. A robotic model of the pectoral fin replicates this result, and demonstrates the effect of altering stroke kinematics on the pattern of force production. The soft dorsal fin of fishes sheds a distinct vortex wake that dramatically alters incoming flow to the tail: the dorsal fin and caudal fin act as dual flapping foils in series. This design can be replicated with a dual-foil flapping robotic device that demonstrates this phenomenon and allows examination of regions of the flapping performance space not available to fishes. We show how the robotic flapping foil device can also be used to better understand the significance of flexible propulsive surfaces for locomotor performance. Finally we emphasize the utility of self-propelled robotic devices as a means of understanding how locomotor forces are generated, and review different conceptual designs for robotic models of aquatic propulsion.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Animals
  • Biomechanical Phenomena
  • Fishes / physiology*
  • Robotics*
  • Swimming / physiology*