Expression of ASCORBATE PEROXIDASE 8 in roots of rice (Oryza sativa L.) seedlings in response to NaCl

J Exp Bot. 2007;58(12):3273-83. doi: 10.1093/jxb/erm174. Epub 2007 Oct 4.

Abstract

Reactive oxygen species are thought to play an important role in NaCl stress. Therefore, the expression patterns of the gene family encoding the H(2)O(2)-scavenging enzyme ascorbate peroxidase (APx; EC1.11.1.11) were analysed in roots of etiolated rice (Oryza sativa L.) seedlings in response to NaCl stress. Applying semi-quantitative RT-PCR, the mRNA levels were quantified for two cytosolic (OsAPx1 and OsAPx2), two peroxisomal (OsAPx3 and OsAPx4), and four chloroplastic (OsAPx5, OsAPx6, OsAPx7, and OsAPx8) isoforms identified in the rice genome. NaCl at 150 mM and 200 mM increased the expression of OsAPx8 and the activities of APx, but had no effect on the expression of OsAPx1, OsAPx2, OsAPx3, OsAPx4, OsAPx5, OsAPx6, and OsAPx7 in rice roots. However, NaCl at 300 mM up-regulated OsAPx8 expression, increased APx activity, and down-regulated OsAPx7 expression, but had no effect on the expression of OsAPx1, OsAPx2, OsAPx3, OsAPx4, OsAPx5, and OsAPx6. The accumulation of abscisic acid (ABA) in response to NaCl was observed in rice roots. Exogenously applied ABA also specifically enhanced the expression of OsAPx8 in rice roots. The accumulation of ABA in rice roots in response to NaCl was inhibited by fluridone (Flu), an inhibitor of carotenoid biosynthesis. Flu treatment also suppressed NaCl-enhanced OsAPx8 expression and APx activity. The effect of Flu on the expression of OsAPx8 and increase in APx activity was reversed by the application of ABA. It appears that NaCl-enhanced expression of OsAPx8 in rice roots is mediated through an accumulation of ABA. Evidence is provided to show that Na(+) but not Cl(-) is required for enhancing OsAPx8 expression, APx activity, and ABA accumulation in rice roots treated with NaCl. H(2)O(2) treatment resulted in an enhancement of OsAPx8 induction but no accumulation of ABA. Diphenylene iodonium treatment, which is known to inhibit NaCl-induced accumulation of H(2)O(2) in rice roots, did not suppress OsAPx8 induction and ABA accumulation by NaCl. It appears that H(2)O(2) is not involved in the regulation of NaCl-induced OsAPx8 expression in rice roots.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Ascorbate Peroxidases
  • Base Sequence
  • DNA Primers
  • Gene Expression Regulation, Enzymologic / genetics*
  • Gene Expression Regulation, Plant / genetics*
  • Genes, Plant
  • Oryza / enzymology*
  • Peroxidases / genetics*
  • Peroxidases / metabolism
  • Plant Roots / enzymology*
  • Reverse Transcriptase Polymerase Chain Reaction
  • Sodium Chloride / pharmacology*

Substances

  • DNA Primers
  • Sodium Chloride
  • Peroxidases
  • Ascorbate Peroxidases