Identification of a G1-type cyclin puc1+ in the fission yeast Schizosaccharomyces pombe

Nature. 1991 May 16;351(6323):245-8. doi: 10.1038/351245a0.

Abstract

In rapidly growing cells of the budding yeast Saccharomyces cerevisiae, the cell cycle is regulated chiefly at Start, just before the G1-S boundary, whereas in the fission yeast Schizosaccharomyces pombe, the cycle is predominantly regulated at G2-M. Both control points are present in both yeasts, and both require the p34cdc2 protein kinase. At G2-M, p34cdc2 kinase activity in S. pombe requires a B-type cyclin in a complex with p34cdc2; this complex is the same as MPF (maturation promoting factor). The p34cdc2 activity at the G1-S transition in S. cerevisiae may be regulated by a similar cyclin complex, using one of the products of a new class of cyclin genes (CLN1, CLN2 and WHI1 (DAF1/CLN3)). At least one is required for progression through the G1-S phase, and deletion of all three leads to G1 arrest. WHI1 was isolated as a dominant allele causing budding yeast cells to divide at a reduced size and was later independently identified as DAF1, a dominant allele of which rendered the cells refractory to the G1-arrest induced by the mating pheromone alpha-factor. The dominant alleles are truncations thought to yield proteins of increased stability, and the cells are accelerated through G1. Without WHI1 function, the cells are hypersensitive to alpha-factor, enlarged and delayed in G1. Heretofore, this G1-class of cyclins has not been identified in other organisms. We have isolated a G1-type cyclin gene called puc1+ from S. pombe, using a functional assay in S. cerevisiae. Expression of puc1+ in S. pombe indicates that it has a cyclin-like role in the fission yeast distinct from the role of the B-type mitotic cyclin.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Amino Acid Sequence
  • Base Sequence
  • Blotting, Northern
  • Cell Division
  • Cyclins / genetics*
  • Cyclins / physiology
  • Flow Cytometry
  • Gene Expression
  • Molecular Sequence Data
  • Saccharomyces cerevisiae / genetics*
  • Schizosaccharomyces / genetics*
  • Sequence Homology, Nucleic Acid
  • Transformation, Bacterial

Substances

  • Cyclins

Associated data

  • GENBANK/X59154