Wave propagation in non-homogeneous magneto-electro-elastic hollow cylinders

Ultrasonics. 2008 Dec;48(8):664-77. doi: 10.1016/j.ultras.2008.03.005. Epub 2008 Mar 16.

Abstract

A dynamic solution is presented for the propagation of harmonic waves in imhomogeneous (functionally graded) magneto-electro-elastic hollow cylinders composed of piezoelectric BaTiO(3) and magnetostrictive CoFe(2)O(4). The materials properties are assumed to vary in the direction of the thickness according to a known variation law. The Legendre orthogonal polynomial series expansion approach is employed to determine the wave propagating characteristics in the hollow cylinders. The dispersion curves of the imhomogeneous piezoelectric-piezomagnetic hollow cylinder and the corresponding non-piezoelectric and non-piezomagnetic hollow cylinders are calculated to show the influence of the piezoelectricity and piezomagnetism. Electric potential and magnetic potential distributions are obtained to illustrate the different influences of the piezoelectricity and piezomagnetism and the different influences of the piezoelectric effect and piezomagnetic effect on longitudinal modes and torsional modes. For the radial polarizing piezoelectric-piezomagnetic hollow cylinder, the piezoelectric effect and piezomagnetic effect take mostly on the longitudinal mode. Finally, a hollow cylinder at different ratio of radius to thickness is calculated to show the influence of the ratio on the piezoelectric effect and piezomagnetic effect.

MeSH terms

  • Elasticity*
  • Electricity*
  • Magnetics*
  • Physical Phenomena