Functional analysis of a predicted flavonol synthase gene family in Arabidopsis

Plant Physiol. 2008 Jul;147(3):1046-61. doi: 10.1104/pp.108.117457. Epub 2008 May 8.

Abstract

The genome of Arabidopsis (Arabidopsis thaliana) contains five sequences with high similarity to FLAVONOL SYNTHASE1 (AtFLS1), a previously characterized flavonol synthase gene that plays a central role in flavonoid metabolism. This apparent redundancy suggests the possibility that Arabidopsis uses multiple isoforms of FLS with different substrate specificities to mediate the production of the flavonols, quercetin and kaempferol, in a tissue-specific and inducible manner. However, biochemical and genetic analysis of the six AtFLS sequences indicates that, although several of the members are expressed, only AtFLS1 encodes a catalytically competent protein. AtFLS1 also appears to be the only member of this group that influences flavonoid levels and the root gravitropic response in seedlings under nonstressed conditions. This study showed that the other expressed AtFLS sequences have tissue- and cell type-specific promoter activities that overlap with those of AtFLS1 and encode proteins that interact with other flavonoid enzymes in yeast two-hybrid assays. Thus, it is possible that these "pseudogenes" have alternative, noncatalytic functions that have not yet been uncovered.

Publication types

  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Amino Acid Sequence
  • Arabidopsis / enzymology
  • Arabidopsis / genetics*
  • Flavonols / biosynthesis*
  • Gene Duplication*
  • Gene Expression
  • Isoenzymes / genetics
  • Isoenzymes / metabolism
  • Molecular Sequence Data
  • Multigene Family*
  • Oxidoreductases / genetics*
  • Oxidoreductases / metabolism
  • Phenotype
  • Plant Proteins / genetics*
  • Plant Proteins / metabolism
  • Two-Hybrid System Techniques

Substances

  • Flavonols
  • Isoenzymes
  • Plant Proteins
  • Oxidoreductases
  • flavonol synthase