Thermal inactivation of avian influenza and Newcastle disease viruses in chicken meat

J Food Prot. 2008 Jun;71(6):1214-22. doi: 10.4315/0362-028x-71.6.1214.

Abstract

Avian influenza viruses (AIV) and Newcastle disease viruses (NDV) of high pathogenicity cause severe systemic disease with high mortality in chickens and can be isolated from the meat of infected chickens. Although AIV and NDV strains of low pathogenicity are typically not present in chicken meat, virus particles in respiratory secretions or feces are possible sources of carcass contamination. Because spread of AIV and NDV is associated with movement of infected birds or their products, the presence of these viruses in chicken meat is cause for concern. This study presents thermal inactivation data for two viruses of high pathogenicity in chickens (AIV strain A/chicken/Pennsylvania/1370/1983 and NDV strain APMV-1/ chicken/California/S0212676/2002) and two viruses of low pathogenicity in chickens (AIV strain A/chicken/Texas/298313/ 2004 and NDV strain APMV-1/chicken/Northern Ireland/Ulster/1967). Under the conditions of the assay, high-pathogenicity AIV was inactivated more slowly in meat from naturally infected chickens than in artificially infected chicken meat with a similar virus titer. In contrast, high-pathogenicity NDV was inactivated similarly in naturally and artificially infected meat. Linear regression models predicted that the current U.S. Department of Agriculture-Food Safety and Inspection Service time-temperature guidelines for cooking chicken meat to achieve a 7-log reduction of Salmonella also would effectively inactivate the AIV and NDV strains tested. Experimentally, the AIV and NDV strains used in this study (and the previously studied H5N1 high-pathogenicity AIV strain A/chicken/Korea/ES/2003) were effectively inactivated in chicken meat held at 70 or 73.9 degrees C for less than 1 s.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Animals
  • Chickens
  • Consumer Product Safety
  • Food Contamination / analysis
  • Food Contamination / prevention & control
  • Food Handling / methods*
  • Hot Temperature*
  • Humans
  • Influenza A virus / growth & development*
  • Influenza A virus / pathogenicity
  • Kinetics
  • Linear Models
  • Meat / virology*
  • Newcastle disease virus / growth & development*
  • Newcastle disease virus / pathogenicity
  • Virus Inactivation*