c-Jun N-terminal kinase activation failure is a new mechanism of anthracycline resistance in acute myeloid leukemia

Leukemia. 2008 Oct;22(10):1899-908. doi: 10.1038/leu.2008.192. Epub 2008 Jul 24.

Abstract

Chemotherapy resistance is a major challenge in acute myeloid leukemia (AML). Besides the P-glycoprotein efflux, additional cellular factors may contribute to drug resistance in AML. c-Jun N-terminal kinase (JNK) is activated after exposure of cells to chemotherapeutics. We asked whether chemoresistance in AML is attributed to intrinsic failure of the AML blasts to activate JNK. In vitro treatment of U937 AML cell line with anthracyclines induced a rapid and robust JNK phosphorylation and apoptosis. In contrast, the anthracyline-resistant derivative cell lines U937R and URD40 showed no JNK activation after exposure to anthracyclines, also at doses that resulted in high accumulation of the drug within the cells. RNA interference-based depletion of JNK1 in drug-sensitive U937 cells made them chemoresistant, whereas selective restoration of the inactive JNK pathway in the resistant U937R cells sensitized them to anthracyclines. Short-term in vitro exposure of primary AML cells (n=29) to daunorubicin showed a strong correlation between the in vitro pharmacodymanic changes of phospho-JNK levels and the response of patients to standard induction chemotherapy (P=0.012). We conclude that JNK activation failure confers another mechanism of anthracycline resistance in AML. Elucidating the ultimate mechanisms leading to JNK suppression in chemoresistant AML may be of major therapeutic value.

MeSH terms

  • ATP Binding Cassette Transporter, Subfamily B, Member 1 / physiology
  • Adolescent
  • Adult
  • Aged
  • Aged, 80 and over
  • Anthracyclines / pharmacology*
  • Anthracyclines / therapeutic use
  • Antibiotics, Antineoplastic / pharmacology*
  • Daunorubicin / pharmacology
  • Drug Resistance, Neoplasm
  • Enzyme Activation
  • Female
  • Humans
  • JNK Mitogen-Activated Protein Kinases / physiology*
  • Leukemia, Myeloid, Acute / drug therapy*
  • Leukemia, Myeloid, Acute / metabolism
  • MAP Kinase Signaling System / drug effects
  • Male
  • Middle Aged
  • Mitogen-Activated Protein Kinase 8 / physiology
  • Reactive Oxygen Species / metabolism
  • U937 Cells

Substances

  • ATP Binding Cassette Transporter, Subfamily B, Member 1
  • Anthracyclines
  • Antibiotics, Antineoplastic
  • Reactive Oxygen Species
  • JNK Mitogen-Activated Protein Kinases
  • Mitogen-Activated Protein Kinase 8
  • Daunorubicin