Near-infrared quantum cutting in transparent nanostructured glass ceramics

Opt Lett. 2008 Aug 15;33(16):1884-6. doi: 10.1364/ol.33.001884.

Abstract

Quantum cutting downconversion involving the emission of two near-infrared photons for each blue photon absorbed is realized in transparent glass ceramics with embedded Pr3+/Yb3+: beta-YF3 nanocrystals. On excitation of Pr3+ ions with a visible photon at 482 nm, Yb3+ ions emit two near-infrared photons at 976 nm through an efficient cooperative energy transfer from Pr3+ to Yb3+, with optimal quantum efficiency close to 200%. The development of the near-infrared quantum cutting transparent glass ceramic could open a route to enhance the energy efficiency of the silicon solar cell by converting one blue solar photon to two near-infrared ones.