Synergistic adsorption of mixtures of cationic gemini and nonionic sugar-based surfactant on silica

J Colloid Interface Sci. 2009 Mar 15;331(2):288-94. doi: 10.1016/j.jcis.2008.11.062. Epub 2008 Dec 3.

Abstract

Adsorption behavior of cationic C(12)-C(4)-C(12) gemini surfactant on silica has been investigated, along with that of nonionic surfactant n-dodecyl-beta-D-maltoside (DM). While DM alone shows meager adsorption on silica, because of the lack of any electrostatic adsorption, cationic gemini adsorbs significantly on the oppositely charged silica surface. Due to the electrostatic nature of cationic gemini adsorption on silica, solution pH affects adsorption of C(12)-C(4)-C(12) gemini dramatically. Meanwhile, C(12)-C(4)-C(12) gemini hemimicelle size at silica/water interface does not seem to change with solution pH. For the mixtures of DM and cationic C(12)-C(4)-C(12) gemini, there is a sharp increase of DM adsorption at silica/water interface, up to 100 times more than DM alone. After mixing with DM, saturation adsorption of cationic C(12)-C(4)-C(12) gemini decreases, due to competition for adsorption sites from DM. At the same time, in its mixture with DM, there is an increased adsorption of C(12)-C(4)-C(12) gemini in the rising part of the adsorption isotherm. Hydrophobic chain-chain interactions, especially with two hydrophobic chains in one C(12)-C(4)-C(12) gemini molecule, and adsorbed C(12)-C(4)-C(12) gemini molecule acting as an anchor or nucleation sites for forming mixed aggregates with DM on silica surface, are attributed to the marked adsorption synergy between DM and cationic C(12)-C(4)-C(12) gemini. The adsorption of surfactants and their mixtures has a marked effect on silica surface charge and silica's wettability.