Effects of a supplemental yeast culture on heat-stressed lactating Holstein cows

J Dairy Sci. 2009 Mar;92(3):935-42. doi: 10.3168/jds.2008-1496.

Abstract

Multiparous, lactating Holstein cows (n = 23; 120 +/- 30 d in milk, 690 +/- 67 kg of body weight) housed in climatic chambers were randomly assigned to 1 of 2 dietary treatments: a diet containing a novel yeast culture formulation (YC) for heat stress (n = 12, 10 g/d) or a control diet (n = 11). The trial length was 28 d and consisted of a 7-d thermal neutral period (TN; 18 degrees C, 20% humidity) followed by 21 d of heat stress (HS; cyclical daily temperatures ranging from 29.4 to 37.8 degrees C and 20% humidity). Cows were individually fed a total mixed ration consisting primarily of alfalfa hay and steam-flaked corn. During TN, the YC feeding had no effect on production variables or most body temperature indices. During HS, all body temperature indices increased and YC had no effect on rump surface temperature, respiration rate, or sweating rates. Cows fed YC had lower rectal temperatures at 1200 and 1800 h (40.29 vs. 40.02 degrees C and 40.35 vs. 40.12 +/- 0.07 degrees C, respectively) compared with control-fed cows. Cows fed both diets lost body weight (42 kg) during HS, but there were no differences between diets. Control-fed cows had increased dry matter intake (DMI) and milk yield (19.1 vs. 17.9 +/- 0.5 kg/d and 32.15 vs. 29.15 +/- 0.02 kg/d, respectively) compared with YC-fed cows, but intake and milk production were similar between diets when evaluated on a body weight basis. Heat stress progressively decreased DMI (29%) and milk yield, with milk production reaching a nadir (33%) in the third week. Heat stress decreased milk protein (7%) and lactose (5%) levels, but did not alter milk fat content. Heat-stressed cows were in calculated negative energy balance (-1.91 +/- 0.70 Mcal/d) and this was unaffected by diet. Independent of diet, HS decreased plasma glucose (11%), but neither diet nor HS altered basal nonesterified fatty acid levels. Heat stress increased plasma urea N concentrations (11.5 vs. 14.8 +/- 0.4 mg/dL). Despite YC-fed cows having slightly reduced body temperatures indices, feeding YC did not prevent the negative effects of HS.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Blood Glucose / analysis
  • Blood Urea Nitrogen
  • Body Temperature
  • Cattle / metabolism
  • Cattle / physiology*
  • Diet / veterinary*
  • Dietary Supplements*
  • Energy Metabolism / physiology
  • Fatty Acids, Nonesterified / blood
  • Female
  • Hot Temperature*
  • Lactation / physiology*
  • Random Allocation
  • Stress, Physiological / physiology*
  • Yeasts*

Substances

  • Blood Glucose
  • Fatty Acids, Nonesterified