Knockdown of limiting-CO2-induced gene HLA3 decreases HCO3- transport and photosynthetic Ci affinity in Chlamydomonas reinhardtii

Proc Natl Acad Sci U S A. 2009 Apr 7;106(14):5990-5. doi: 10.1073/pnas.0812885106. Epub 2009 Mar 24.

Abstract

The CO(2)-concentrating mechanism (CCM) of Chlamydomonas reinhardtii and other microalgal species is essential for photosynthetic growth in most natural settings. A great deal has been learned regarding the CCM in cyanobacteria, including identification of inorganic carbon (Ci; CO(2) and HCO(3)(-)) transporters; however, specific knowledge of analogous transporters has remained elusive in eukaryotic microalgae such as C. reinhardtii. Here we investigated whether the limiting-CO(2)-inducible, putative ABC-type transporter HLA3 might function as a HCO(3)(-) transporter by evaluating the effect of pH on growth, photosynthetic Ci affinity, and [(14)C]-Ci uptake in very low CO(2) conditions following RNA interference (RNAi) knockdown of HLA3 mRNA levels in wild-type and mutant cells. Although knockdown of HLA3 mRNA alone resulted in only modest but high-pH-dependent decreases in photosynthetic Ci affinity and Ci uptake, the combination of nearly complete knockdown of HLA3 mRNA with mutations in LCIB (which encodes limiting-Ci-inducible plastid-localized protein required for normal Ci uptake or accumulation in low-CO(2) conditions) and/or simultaneous, apparently off-target knockdown of LCIA mRNA (which encodes limiting-Ci-inducible plastid envelope protein reported to transport HCO(3)(-)) resulted in dramatic decreases in growth, Ci uptake, and photosynthetic Ci affinity, especially at pH 9, at which HCO(3)(-) is the predominant form of available Ci. Collectively, the data presented here provide compelling evidence that HLA3 is directly or indirectly involved in HCO(3)(-) transport, along with additional evidence supporting a role for LCIA in chloroplast envelope HCO(3)(-) transport and a role for LCIB in chloroplast Ci accumulation.

Publication types

  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • ATP-Binding Cassette Transporters / genetics
  • ATP-Binding Cassette Transporters / metabolism*
  • Animals
  • Bacterial Proteins / metabolism*
  • Bicarbonates / metabolism*
  • Biological Transport
  • Carbon Compounds, Inorganic / metabolism
  • Carbon Dioxide / pharmacology*
  • Carbon Radioisotopes
  • Chlamydomonas reinhardtii / metabolism*
  • Chloroplasts / metabolism
  • Photosynthesis*
  • Transcriptional Activation / drug effects*

Substances

  • ATP-Binding Cassette Transporters
  • Bacterial Proteins
  • Bicarbonates
  • Carbon Compounds, Inorganic
  • Carbon Radioisotopes
  • Carbon Dioxide