A 128-channel 6 mW wireless neural recording IC with spike feature extraction and UWB transmitter

IEEE Trans Neural Syst Rehabil Eng. 2009 Aug;17(4):312-21. doi: 10.1109/TNSRE.2009.2021607. Epub 2009 May 8.

Abstract

This paper reports a 128-channel neural recording integrated circuit (IC) with on-the-fly spike feature extraction and wireless telemetry. The chip consists of eight 16-channel front-end recording blocks, spike detection and feature extraction digital signal processor (DSP), ultra wideband (UWB) transmitter, and on-chip bias generators. Each recording channel has amplifiers with programmable gain and bandwidth to accommodate different types of biological signals. An analog-to-digital converter (ADC) shared by 16 amplifiers through time-multiplexing results in a balanced trade-off between the power consumption and chip area. A nonlinear energy operator (NEO) based spike detector is implemented for identifying spikes, which are further processed by a digital frequency-shaping filter. The computationally efficient spike detection and feature extraction algorithms attribute to an auspicious DSP implementation on-chip. UWB telemetry is designed to wirelessly transfer raw data from 128 recording channels at a data rate of 90 Mbit/s. The chip is realized in 0.35 mum complementary metal-oxide-semiconductor (CMOS) process with an area of 8.8 x 7.2 mm(2) and consumes 6 mW by employing a sequential turn-on architecture that selectively powers off idle analog circuit blocks. The chip has been tested for electrical specifications and verified in an ex vivo biological environment.

Publication types

  • Evaluation Study
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Action Potentials / physiology*
  • Equipment Design
  • Equipment Failure Analysis
  • Nerve Net / physiology*
  • Pattern Recognition, Automated / methods*
  • Reproducibility of Results
  • Sensitivity and Specificity
  • Signal Processing, Computer-Assisted / instrumentation*
  • Telemetry / instrumentation*