The crucial role of polyatomic anions in molecular architecture: structural and magnetic versatility of five nickel(II) complexes derived from A N,N,O-donor Schiff base ligand

Inorg Chem. 2009 Jul 6;48(13):5848-60. doi: 10.1021/ic9001863.

Abstract

Five new nickel(II) complexes [Ni(2)L(2)(N(3))(2)(H(2)O)(2)] (1), [Ni(2)L(2)(NO(3))(2)] (2), [Ni(2)L(2)(O(2)CPh)(CH(3)OH)(2)]ClO(4).0.5CH(3)OH (3), [Ni(3)L(2)(O(2)CPh)(4)] (4), and [Ni(2)L(2)(NO(2))(2)](n) (5) have been synthesized by using a tridentate Schiff base ligand, HL (2-[(3-Methylamino-propylimino)-methyl]-phenol), and the polyatomic monoanions N(3)(-), NO(3)(-), PhCOO(-), or NO(2)(-). The complexes have been structurally and magnetically characterized. The structural analysis reveals that in all five complexes, the Ni(II) ions possess a distorted octahedral geometry. Complexes 1 and 2 are dinuclear with di-mu-1,1-azido and di-mu(2)-phenoxo bridges, respectively. Complex 3 is also a di-mu(2)-phenoxo-bridged dinuclear Ni(II) complex but has an additional syn-syn benzoate bridge. Compound 4 possesses a linear trinuclear structure with the tridentate Schiff base ligand coordinated to the terminal nickel atoms which are linked to the central Ni(II) by phenoxo and carboxylate bridges. Complex 5 consists of a dinuclear entity, bridged by di-mu(2)-phenoxo together with a cis-(mu-nitrito-1kappaO:2kappaN) nitrite ion. The dinuclear units are linked each other by another bridging trans-(mu-nitrito-1kappaO:2kappaN) nitrite to form a Ni(II) chain that shows the presence of unprecedented alternating cis- and trans-N,O bridging mode of the nitrite anion. Variable-temperature magnetic susceptibility measurements of complex 1 indicate the presence of ferromagnetic exchange interactions within the dimer (J = 23.5(3) cm(-1)) together with antiferromagnetic interdimer interactions (J' = -0.513(3) cm(-1)), whereas compounds 2 and 3 show intradimer antiferromagnetic interactions (J = -24.27(6) and -16.48(4) cm(-1), respectively). Ferromagnetic coupling (J = 6.14(2) cm(-1)) is observed in complex 4 for the linear centro-symmetric Ni(II) trimer, whereas complex 5 shows an alternating intra-chain antiferromagnetic coupling (J(1) = -32.1(1) cm(-1) and J(2) = -3.2(1) cm(-1)).

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Anions
  • Crystallography, X-Ray
  • Ligands
  • Magnetics*
  • Molecular Structure
  • Nickel / chemistry*
  • Schiff Bases / chemistry*
  • Spectrophotometry, Infrared

Substances

  • Anions
  • Ligands
  • Schiff Bases
  • Nickel