MSP-1p42-specific antibodies affect growth and development of intra-erythrocytic parasites of Plasmodium falciparum

Malar J. 2009 Aug 3:8:183. doi: 10.1186/1475-2875-8-183.

Abstract

Background: Antibodies are the main effector molecules in the defense against blood stages of the malaria parasite Plasmodium falciparum. Understanding the mechanisms by which vaccine-induced anti-blood stage antibodies work in protecting against malaria is essential for vaccine design and testing.

Methods: The effects of MSP-1p42-specific antibodies on the development of blood stage parasites were studied using microscopy, flow cytometry and the pLDH assay. To determine allele-specific effects, if present, allele-specific antibodies and the various parasite clones representative of these alleles of MSP-1 were employed.

Results: The mode of action of anti-MSP-1p42 antibodies differs among the parasite clones tested: anti-MSP-1p42 sera act mainly through invasion-inhibitory mechanisms against FVO parasites, by either preventing schizonts from rupturing or agglutinating merozoites upon their release. The same antibodies do not prevent the rupture of 3D7 schizonts; instead they agglutinate merozoites and arrest the development of young parasites at the early trophozoite stage, thus acting through both invasion- and growth inhibitory mechanisms. The second key finding is that antibodies have access to the intra-erythrocytic parasite, as evidenced by the labeling of developing merozoites with fluorochrome-conjugated anti-MSP-1p42 antibodies. Access to the parasite through this route likely allows antibodies to exert their inhibitory activities on the maturing schizonts leading to their inability to rupture and be released as infectious merozoites.

Conclusion: The identification of various modes of action by which anti-MSP-1 antibodies function against the parasite during erythrocytic development emphasizes the importance of functional assays for evaluating malaria vaccines and may also open new avenues for immunotherapy and vaccine development.

Publication types

  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Animals
  • Antibodies, Protozoan / immunology*
  • Erythrocytes / parasitology*
  • Merozoites / growth & development
  • Merozoites / immunology
  • Plasmodium falciparum / growth & development*
  • Plasmodium falciparum / immunology*
  • Rabbits
  • Schizonts / growth & development
  • Schizonts / immunology
  • Subtilisins / immunology*

Substances

  • Antibodies, Protozoan
  • Subtilisins
  • sub-2 protein, Plasmodium falciparum