Atom interferometers with scalable enclosed area

Phys Rev Lett. 2009 Jun 19;102(24):240403. doi: 10.1103/PhysRevLett.102.240403. Epub 2009 Jun 18.

Abstract

Bloch oscillations (i.e., coherent acceleration of matter waves by an optical lattice) and Bragg diffraction are integrated into light-pulse atom interferometers with large momentum splitting between the interferometer arms, and hence enhanced sensitivity. Simultaneous acceleration of both arms in the same internal states suppresses systematic effects, and simultaneously running a pair of interferometers suppresses the effect of vibrations. Ramsey-Bordé interferometers using four such Bloch-Bragg-Bloch beam splitters exhibit 15% contrast at 24variant Planck's over 2pik splitting, the largest so far (variant Planck's over 2pik is the photon momentum); single beam splitters achieve 88variant Planck's over 2pik. The prospects for reaching 100 s of variant Planck's over 2pik and applications such as gravitational wave sensors are discussed.