In vitro reaction of human osteoblasts on alumina-toughened zirconia

Clin Oral Implants Res. 2009 Nov;20(11):1265-71. doi: 10.1111/j.1600-0501.2009.01735.x. Epub 2009 Aug 4.

Abstract

Objectives: Alumina toughening enhances the mechanical properties of zirconia ceramics but the biocompatibility of this material has rarely been addressed. In this study, we examined the osteoblast response to alumina-toughened zirconia (ATZ) with different surface topographies.

Material and methods: Human osteoblasts isolated from maxillary biopsies of four patients were cultured and seeded onto disks of the following substrates: ATZ with a machined surface, airborne-particle abraded ATZ, airborne-particle abraded and acid etched ATZ. Airborne-particle abraded and acid etched titanium (SLA) and polystyrene disks served as a reference control. The surface topography of the various substrates was characterized by profilometry (R(a), R(p-v)) and scanning electron microscopy (SEM). Cell proliferation, cell-covered surface area, alkaline phophatase (ALP) and osteocalcin production were determined. The cell morphology was analyzed on SEM images.

Results: The surface roughness of ATZ was increased by airborne-particle abrasion, but with the R(a) and R(p-v) values showing significantly lower values compared with SLA titanium (Mann-Whitney U-test P<0.05). The proliferation assay revealed no statistically significant differences between the ATZ substrates, SLA titanium and polystyrene (Kruskal-Wallis test, P>0.05). All substrates were densely covered by osteoblasts. ALP and osteocalcin production was similar on the examined surfaces. Cell morphology analysis revealed flat-spread osteoblasts with cellular extensions on all substrates.

Conclusions: These results indicate that ATZ may be a viable substrate for the growth and differentiation of human osteoblasts. Surface modification of ATZ by airborne-particle abrasion alone or in combination with acid etching seems not to interfere with the growth and differentiation of the osteoblasts.

Publication types

  • Comparative Study

MeSH terms

  • Aluminum Oxide / pharmacology*
  • Cell Differentiation / drug effects
  • Cell Proliferation / drug effects
  • Cells, Cultured
  • Dental Alloys / pharmacology*
  • Dental Porcelain / pharmacology
  • Humans
  • Osteoblasts / cytology*
  • Osteoblasts / drug effects
  • Osteoblasts / physiology
  • Prostheses and Implants*
  • Statistics, Nonparametric
  • Surface Properties
  • Zirconium / pharmacology*

Substances

  • Dental Alloys
  • Dental Porcelain
  • Zirconium
  • Aluminum Oxide