On the viability of cyclometalated Ru(II) complexes for light-harvesting applications

Inorg Chem. 2009 Oct 19;48(20):9631-43. doi: 10.1021/ic900653q.

Abstract

The effects of replacing a single polypyridyl ligand with an analogous anionic cyclometalating ligand were investigated for a set of three structurally related series of Ru(II) compounds formulated as [Ru(bpy)(2)(L)](z), [Ru(tpy)(L)](z), and [Ru(tpy)(L)Cl](z), where z = 0, +1, or +2, and L = polypyridyl (e.g., bpy = 2,2'-bipyridine, tpy = 2,2':6',2''-terpyridine) or cyclometalating ligand (e.g., deprotonated forms of 2-phenylpyridine or 3-(2-pyridinyl)-benzoic acid). Each of the complexes were synthesized and characterized by (1)H NMR spectroscopy, electrospray ionization mass spectrometry (ESI-MS), and/or elemental analyses (EA). Cyclic voltammetry reveals that cyclometalation causes a shift of the first oxidation and reduction potentials by -0.5 to -0.8 V and -0.2 to -0.4 V, respectively, relative to their polypyridyl congeners. These disparate shifts have the effect of inducing a bathochromic shift of the lowest-energy absorption bands by as much as 90 nm. With the aid of time-dependent density functional theory (DFT), the lowest-energy bands (lambda(max) = 500-575 nm) were assigned as predominantly metal-to-ligand charge-transfer (MLCT) transitions from Ru to the polypyridyl ligands, while Ru-->C(wedge)NN (or C(wedge)N(wedge)N or N(wedge)C(wedge)N) transitions are found within the absorption bands centered at ca. 400 nm. The properties of a series of compounds furnished with carboxylic acid anchoring groups at various positions are also examined for applications involving the sensitization of metal-oxide semiconductors. It is determined that the thermodynamic potentials of many of these compounds are appropriate for conventional photoelectrochemical cells (e.g., dye-sensitized solar cells) that utilize a titania electrode and iodide-based electrolyte.