Curcuminoid analogs with potent activity against Trypanosoma and Leishmania species

Eur J Med Chem. 2010 Mar;45(3):941-56. doi: 10.1016/j.ejmech.2009.11.035. Epub 2009 Nov 24.

Abstract

The natural curcuminoids curcumin (1), demethoxycurcumin (2) and bisdemethoxycurcumin (3) have been chemically modified to give 46 analogs and 8 pairs of 1:1 mixture of curcuminoid analogs and these parent curcuminoids and their analogs were assessed against protozoa of the Trypanosoma and Leishmania species. The parent curcuminoids exhibited low antitrypanosomal activity (EC(50) for our drug-sensitive Trypanosoma brucei brucei line (WT) of compounds 1, 2 and 3 are 2.5, 4.6 and 7.7 microM, respectively). Among 43 curcuminoid analogs and 8 pairs of 1:1 mixture of curcuminoid analogs tested, 8 pure analogs and 5 isomeric mixtures of analogs exhibited high antitrypanosomal activity in submicromolar order of magnitude. Among these highly active analogs, 1,7-bis(4-hydroxy-3-methoxyphenyl)hept-4-en-3-one (40) was the most active compound, with an EC(50) value of 0.053+/-0.007 microM; it was about 2-fold more active than the standard veterinary drug diminazene aceturate (EC(50) 0.12+/-0.01 microM). Using a previously characterized diminazene-resistant T. b. brucei (TbAT1-KO) and a derived multi-drug resistant line (B48), no cross-resistance of curcuminoids was observed to the diamidine and melaminophenyl arsenical drugs that are the current treatments. Indeed, curcuminoids carrying a conjugated keto (enone) motif, including 40, were significantly more active against T. b. brucei B48. This enone motif was found to contribute to particularly high trypanocidal activity against all Trypanosoma species and strains tested. The parent curcuminoids showed low antileishmanial activity (EC(50) values of compounds 1 and 2 for Leishmania mexicana amastigotes are 16+/-3 and 37+/-6 microM, respectively) while the control drug, pentamidine, displayed an EC(50) of 16+/-2 microM. Among the active curcuminoid analogs, four compounds exhibited EC(50) values of less than 5 microM against Leishmania major promastigotes and four against L. mexicana amastigotes. No significant difference in sensitivity to curcuminoids between L. major promastigotes and L. mexicana amastigotes was observed. The parent curcuminoids and most of their analogs were also tested for their toxicity against human embryonic kidney (HEK) cells. All the curcuminoids exhibited lower toxicity to HEK cells than to T. b. brucei bloodstream forms and only one of the tested compounds showed significantly higher activity against HEK cells than curcumin (1). The selectivity index for T. b. brucei ranged from 3-fold to 1500-fold. The selectivity index for the most active analog, the enone 40, was 453-fold.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Antimalarials / chemical synthesis
  • Antimalarials / chemistry
  • Antimalarials / pharmacology
  • Cell Line
  • Curcumin / analogs & derivatives*
  • Curcumin / chemical synthesis
  • Curcumin / chemistry
  • Curcumin / pharmacology
  • Diarylheptanoids
  • Humans
  • Inhibitory Concentration 50
  • Leishmania / drug effects*
  • Molecular Structure
  • Trypanocidal Agents / chemical synthesis
  • Trypanocidal Agents / chemistry
  • Trypanocidal Agents / pharmacology
  • Trypanosoma / drug effects*

Substances

  • Antimalarials
  • Diarylheptanoids
  • Trypanocidal Agents
  • bisdemethoxycurcumin
  • Curcumin
  • demethoxycurcumin