Effect of phenolic compounds on the formation of alpha-aminoadipic and gamma-glutamic semialdehydes from myofibrillar proteins oxidized by copper, iron, and myoglobin

J Agric Food Chem. 2010 Apr 14;58(7):4448-55. doi: 10.1021/jf903757h.

Abstract

The effect of selected phenolic compounds, namely, gallic acid, chlorogenic acid, genistein, catechin, cyanidin-3-glucoside and rutin, on the formation of specific protein carbonyls, alpha-aminoadipic and gamma-glutamic semialdehydes (AAS and GGS, respectively), from oxidized myofibrillar proteins, was studied in the present article. Suspensions containing myofibrillar proteins (20 mg/mL) and the aforementioned phenolic compounds (1 mM) were oxidized (37 degrees C for 20 days) in the presence of copper acetate, iron (FeCl(3)), or myoglobin (10 microM) in combination with 1 mM H(2)O(2) and analyzed for AAS and GGS using liquid chromatography-electrospray ionization-mass spectrometry (LC-ESI-MS). Suspensions with added alpha-tocopherol (1 mM) and a control group (with no phenolic compound) were also considered. In the presence of copper, the alpha-tocopherol and most phenolic compounds significantly inhibited the formation of AAS and GGS. In iron- and myoglobin-oxidized suspensions, however, some of those phenolic compounds (i.e., chlorogenic acid and genistein) promoted the formation of the semialdehydes. Besides the influence of the oxidation promoters, the overall effect of plant phenolics on protein oxidation is likely affected by the chemical structure of the phenolics and the result of the interactions between these compounds and myofibrillar proteins. Plausible mechanisms for the antioxidant and pro-oxidant effects of plant phenolics on myofibrillar proteins are proposed in the present article. This study highlights the complexity of redox reactions between plant phenolics and oxidizing myofibrillar proteins.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Chickens
  • Copper / chemistry*
  • Iron / chemistry*
  • Molecular Structure
  • Muscle Proteins / chemistry*
  • Myofibrils / chemistry*
  • Myoglobin / chemistry*
  • Oxidation-Reduction
  • Phenols / chemistry*
  • Swine

Substances

  • Muscle Proteins
  • Myoglobin
  • Phenols
  • Copper
  • Iron