Förster distances for fluorescence resonant energy transfer between mCherry and other visible fluorescent proteins

Anal Biochem. 2010 Jul 1;402(1):105-6. doi: 10.1016/j.ab.2010.03.026. Epub 2010 Mar 27.

Abstract

We present, for the red fluorescent protein mCherry acting as both fluorescence resonant energy transfer (FRET) donor and acceptor, Förster critical distance (r(0)) values with five important visible fluorescent protein (VFP) variants as well as with itself. The pair EYFP-mCherry exhibits an r(0) of 5.66nm, equaling or exceeding any combination of VFPs reported previously. Moreover, mCherry should be an excellent chromophore for homo-FRET with an r(0) of 5.10nm for energy transfer between two mCherry moieties. Finally, mCherry exhibits higher r(0) values than does DsRed. These characteristics, combined with mCherry's rapid folding and excellent spectral properties, suggest that mCherry constitutes a valuable long-wavelength hetero-FRET acceptor and probe for homo-FRET experiments.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Fluorescence Resonance Energy Transfer*
  • Luminescent Proteins / chemistry*
  • Red Fluorescent Protein

Substances

  • Luminescent Proteins