Dynamics of transition from static to kinetic friction

Phys Rev Lett. 2009 Nov 6;103(19):194301. doi: 10.1103/PhysRevLett.103.194301. Epub 2009 Nov 6.

Abstract

We propose a model for a description of dynamics of cracklike processes that occur at the interface between two blocks prior to the onset of frictional motion. We find that the onset of sliding is preceded by well-defined detachment fronts initiated at the slider trailing edge and extended across the slider over limited lengths smaller than the overall length of the slider. Three different types of detachment fronts may play a role in the onset of sliding: (i) Rayleigh (surface sound) fronts, (ii) slow detachment fronts, and (iii) fast fronts. The important consequence of the precursor dynamics is that before the transition to overall sliding occurs, the initially uniform, unstressed slider is already transformed into a highly nonuniform, stressed state. Our model allows us to explain experimental observations and predicts the effect of material properties on the dynamics of the transition to sliding.