Bipodal PEGylated alkanethiol for the enhanced electrochemical detection of genetic markers involved in breast cancer

Biosens Bioelectron. 2010 Dec 15;26(4):1500-6. doi: 10.1016/j.bios.2010.07.095. Epub 2010 Aug 7.

Abstract

Extensive research efforts continue to be invested in the development of low-density electrochemical DNA sensor arrays for application in theranostics and pharmacogenomics. Rapid and low-cost technologies are thus required for genosensor arrays to impact on current medical practice, with sensors clearly being required to detect their targets with high sensitivity and specificity, whilst resisting biofouling and avoiding interfering signals from the sample matrix. We report on the performance of three polyethylene glycol (PEG) co-immobilisation strategies used in the preparation of DNA sensors, using the detection of the breast cancer marker oestrogen receptor-α as a model system. PEGylated DNA capture probes for oestrogen receptor-α were co-immobilised in the presence of either a PEG alkanethiol, a mixture of PEG alkanethiol and mercaptohexanol or a bipodal aromatic PEG alkanethiol. Electrochemical impedance spectroscopy and pulsed amperometry were employed to characterise the prepared surface and sensitivity of the sensor. A surface plasmon resonance study was additionally carried out to confirm the results obtained electrochemically. Finally, the best co-immobilisation system, consisting of the co-assembly of oestrogen receptor-α capture probes and bipodal aromatic PEG alkanethiol in a ratio of 1:100, was used for the electrochemical analysis of a PCR product resulting from the amplification of the genetic material extracted from 20 MCF7 cells. This novel co-immobilisation system exhibited both high electrochemical sensitivity and resistance to fouling believed to results from an enhanced electron permeability and surface hydrophilicity.

Publication types

  • Evaluation Study
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Base Sequence
  • Biosensing Techniques / methods*
  • Breast Neoplasms / genetics*
  • Cell Line, Tumor
  • DNA Probes / genetics
  • Dielectric Spectroscopy / methods
  • Electrochemical Techniques
  • Estrogen Receptor alpha / genetics
  • Female
  • Genetic Markers*
  • Humans
  • Oligonucleotide Array Sequence Analysis
  • Polyethylene Glycols / chemistry
  • Polymerase Chain Reaction
  • Sulfhydryl Compounds / chemistry
  • Surface Plasmon Resonance

Substances

  • DNA Probes
  • ESR1 protein, human
  • Estrogen Receptor alpha
  • Genetic Markers
  • Sulfhydryl Compounds
  • Polyethylene Glycols