Method to derive ocean absorption coefficients from remote-sensing reflectance

Appl Opt. 1996 Jan 20;35(3):453-62. doi: 10.1364/AO.35.000453.

Abstract

A method to derive in-water absorption coefficients from total remote-sensing reflectance (ratio of the upwelling radiance to the downwelling irradiance above the surface) analytically is presented. For measurements made in the Gulf of Mexico and Monterey Bay, with concentrations of chlorophyll-a ranging from 0.07 to 50 mg/m(3), comparisons are made for the total absorption coefficients derived with the suggested method and those derived with diffuse attenuation coefficients. For these coastal to open-ocean waters, including regions of upwelling and the Loop Current, the results are as follows: at 440 nm the difference between the two methods is 13.0% (r(2) = 0.96) for total absorption coefficients ranging from 0.02 to 2.0 m(-1); at 488 nm the difference is 14.5% (r(2) = 0.97); and at 550 nm the difference is 13.6% (r(2) = 0.96). The results indicate that the method presented works very well for retrieval of in-water absorption coefficients exclusively from remotely measured signals, and that this method has a wide range of potential applications in oceanic remote sensing.